View clinical trials related to Hospital Medicine.
Filter by:The escalation of care for patients in a hospitalized setting between nurse practitioner managed services, teaching services, step-down units, and intensive care units is critical for appropriate care for any patient. Often such "triggers" for escalation are initiated based on the nursing evaluation of the patient, followed by physician history and physical exam, then augmented based on laboratory values. These "triggers" can enhance the care of patients without increasing the workload of responder teams. One of the goals in hospital medicine is the earlier identification of patients that require an escalation of care. The study team developed a model through a retrospective analysis of the historical data from the Mount Sinai Data Warehouse (MSDW), which can provide machine learning based triggers for escalation of care (Approved by: IRB-18-00581). This model is called "Medical Early Warning Score ++" (MEWS ++). This IRB seeks to prospectively validate the developed model through a pragmatic clinical trial of using these alerts to trigger an evaluation for appropriateness of escalation of care on two general inpatients wards, one medical and one surgical. These alerts will not change the standard of care. They will simply suggest to the care team that the patient should be further evaluated without specifying a subsequent specific course of action. In other words, these alerts in themselves does not designate any change to the care provider's clinical standard of care. The study team estimates that this study would require the evaluation of ~ 18380 bed movements and approximately 30 months to complete, based on the rate of escalation of care and rate of bed movements in the selected units.