View clinical trials related to Hodgkin Disease.
Filter by:This is an open label, phase I/IIa, 3 x 3 dose escalation study with an initial phase I followed by a disease focused phase II. The primary objective of the phase I is to determine the maximum tolerated dose (MTD) and dose limiting toxicity (DLT) of the combinations of oral 5-azacitidine and romidepsin in patients with lymphoma. The safety and toxicity of this combination will be evaluated throughout the entire study. If the combination of oral 5-azacitidine and romidepsin is found to be feasible and an MTD is established, the phase II part of the study will be initiated. Phase II will consist of a 2 stage design of the combination of oral 5-azacitidine and romidepsin for patients with relapsed or refractory T-cell lymphomas.
This phase 4, single-arm, open-label, multicenter study is designed to evaluate the efficacy and safety of brentuximab vedotin as a single agent in adult participants with histologically confirmed CD30+ relapsed or refractory classical Hodgkin Lymphoma who have not received a prior stem cell transplantation (SCT) and are considered to be not suitable for SCT or multiagent chemotherapy at the time of study entry.
The goal of this clinical research study is to learn if it is safe and feasible to transplant patients with one of two units of cord blood that has been changed in the laboratory before it is given. Only patients with leukemia, lymphoma or myelodysplastic syndrome will be allowed on this study. The secondary goal is to obtain the preliminary efficacy outcome. Researchers also want to learn if using cord blood that has been changed can help to control the disease. One cord blood unit will not be changed before it is administered to you. The cord blood unit that will be altered will be changed to use sugar that is found in small amounts in blood cells. It plays a role in telling transplanted cells where they should go in the body. Adding more sugars to the cord blood cells in the laboratory helps the cord blood cells find their way to the bone marrow faster. This process is called fucosylation. "Conditioning" is the chemo and other medicines and will be given to patients to prepare to receive cord blood transplant cells. This prevents immune system from rejecting the cells. Conditioning will be started before the transplant. ATG is a protein that removes immune cells that cause damage to the body. Clofarabine is designed to interfere with the growth and development of cancer cells. Fludarabine is designed to interfere with the DNA of cancer cells, which may cause the cancer cells to die. This chemotherapy is also designed to block your body's ability to reject the donor's bone marrow cells. Melphalan and busulfan are designed to bind to the DNA of cells, which may cause cancer cells to die. MMF and tacrolimus are designed to block the donor cells from growing and spreading in a way that could cause graft versus host disease (GVHD -- a condition in which transplanted tissue attacks the recipient's body). This may help to prevent GVHD. Rituximab is designed to attach to cancer cells, which may cause them to die. A Phase I study for treatment of patients (N=25) with hematologic malignancies and MDS who are candidates for dual-cord UCBT is ongoing at M.D. Anderson Cancer Center under an Investigator-initiated IND Application, E.J. Shpall, MD, PI. Since August, 2012, Preliminary results indicate that ASC-101 UCBT is well-tolerated and no ASC-101 related untoward adverse events have been observed. To date, the median time to neutrophil engraftment (N=9) is 15 days, and the median time to platelet engraftment (N=9) is 33 days. The trial remains ongoing.
Phase II study is being conducted to confirm the safety and efficacy of high-dose Melphalan HCl for Injection (Propylene Glycol-Free) when included in the BEAM regimen for myeloablative conditioning in lymphoma patients undergoing ASCT
The purpose of this study is that ruxolitinib may be a possible treatment option for relapsed or refractory patients with Hodgkin and primary mediastinal large B-cell lymphoma.
By combining a variety of agents that potentiate Zidovudine (ZDV), the investigators hope to induce remission in this generally fatal disease. Most therapies for aggressive B cell lymphomas are based upon intensive chemotherapeutic regimens, expensive modalities (bone marrow transplant, Rituximab), or experimental approaches (gene therapy, cytotoxic T cell infusion) that are difficult to implement in heavily pre-treated patients. Therapy for relapsed aggressive B cell lymphomas is very poor. Even curable lymphomas such as Burkitt Lymphoma (BL) and Hodgkin lymphoma are extremely difficult to treat in relapse and/or after stem cell transplant failure. The investigators propose a novel therapeutic approach that exploits the presence of Epstein-Barr virus (EBV) in lymphomas; antiviral mediated suppression of NF-kB and disruption of viral latency.
This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.
In this study, investigators are trying to see if LMP specific cytotoxic T lymphocytes (CTLs) will prevent or treat disease called Epstein Barr Virus (EBV) Disorder including either Hodgkin Lymphoma or non-Hodgkin Lymphoma or Lymphoepithelioma or severe chronic active EBV infection syndrome (SCAEBV) or Leiomyosarcoma which has come back or has not gone away after treatment, including the best treatment. Investigators are using special immune system cells called third party LMP specific cytotoxic T lymphocytes (CTLs), a new experimental therapy. Some patients with Lymphoma or SCAEBV or Leiomyosarcoma show evidence of infection with the virus that causes infectious mononucleosis Epstein Barr virus (EBV) before or at the time of their diagnosis. EBV is found in the cancer cells of up to half the patients with Hodgkin's and non-Hodgkin Lymphoma, suggesting that it may play a role in causing Lymphoma. The cancer cells (in lymphoma) and some B cells (in SCAEBV) infected by EBV are able to hide from the body's immune system and escape destruction. The investigators want to see if special white blood cells, called T cells, that have been trained to kill EBV infected cells can survive in patient's blood and affect the tumor or infection. Investigators used this sort of therapy to treat a different type of cancer that occurs after bone marrow or solid organ transplant called post transplant lymphoma. In this type of cancer the tumor cells have 9 proteins made by EBV on their surface. They grew T cells in the laboratory that recognized all 9 proteins and were able to successfully prevent and treat post transplant lymphoma. However in Hodgkin Lymphoma, the tumor cells and B cells only express 2 EBV proteins. In a previous study they made T cells that recognized all 9 proteins and gave them to patients with Hodgkin Lymphoma. Some patients had a partial response to this therapy but no patients had a complete response. They think one reason may be that many of the T cells reacted with proteins that were not on the tumor cells. In this present study the investigators are trying to find out if the investigators can improve this treatment by growing T cells that recognize proteins expressed on EBV infected Lymphoma cells and B cells called LMP-1 and LMP2. These special T cells are called third party LMP 1/2 -specific cytotoxic T-lymphocytes (CTLs). These LMP-specific cytotoxic T cells are an investigational product not approved by the Food and Drug Administration.
This randomized clinical trial studies standard GVHD prophylaxis with tacrolimus and methotrexate compared to tacrolimus, mycophenolate mofetil and a reduced-dose methotrexate in patients with hematologic malignancies undergoing allogeneic hematopoietic cell transplant. Both mycophenolate mofetil and reduced-dose methotrexate, in combination with a calcineurin inhibitor, have been shown to be safe and effective in GVHD prevention with less toxicity than standard dose methotrexate. It is not yet known, however, whether this combination of mycophenolate mofetil and reduced-dose methotrexate with tacrolimus is more effective than tacrolimus and standard dose methotrexate in preventing GVHD.
This is an open-label trial to estimate the concentrations of brentuximab vedotin in relapsed/refractory HL or relapsed/refractory sALCL patients treated with either brentuximab vedotin or brentuximab vedotin + rifampicin.