View clinical trials related to Hodgkin Disease.
Filter by:RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
This research is being done in order to improve treatment outcomes in patients diagnosed with bulky, early stage Hodgkin lymphoma and to reduce the side effects that are associated with use of radiation used in current treatments. The chemotherapy treatment in this study consists of a combination of four drugs approved by the Food and Drug Administration (FDA): doxorubicin, bleomycin, vinblastine, and dacarbazine. This regimen (called ABVD) has been found to be effective in treating patients with Hodgkin lymphoma and is considered the standard of treatment used with radiation therapy in patients with bulky early stage Hodgkin lymphoma. As part of the evaluation of the effectiveness of the chemotherapy treatment, PET scans will be obtained during the course of therapy. The usefulness of this PET scan will be evaluated to determine whether radiation may be left out in the treatment of disease if the PET scan shows that the patient has responded to chemotherapy alone. The plan is to identify a group of patients using early PET scans in order to change to a chemotherapy treatment called BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone). It is one of the most highly effective chemotherapy regimens for Hodgkin lymphoma, but is associated with more side effects than ABVD. Although it has become standard of care in Europe, its use has been more limited in the U.S. because of concerns about toxicity.
This phase II trial is studying how well giving bendamustine hydrochloride, etoposide, dexamethasone, and filgrastim together for peripheral stem cell mobilization works in treating patients with refractory or recurrent lymphoma or multiple myeloma. Giving chemotherapy, such as bendamustine hydrochloride, etoposide, and dexamethasone, before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim, and certain chemotherapy drugs helps stem cells move from the bone marrow to the blood so they can be collected and stored
This is a randomized, double-blind, placebo-controlled, multicenter phase 3 trial to evaluate the efficacy and safety of brentuximab vedotin (SGN-35) and best supportive care (BSC) compared to placebo and BSC in treatment of residual Hodgkin lymphoma (HL) following autologous stem cell transplant (ASCT).
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, vinblastine, and prednisolone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Surgery to remove involved lymph nodes may be an effective treatment for young patients with nodular lymphocyte-predominant Hodgkin lymphoma. PURPOSE: This phase IV trial is continuing to study the side effects of giving surgery alone or giving surgery with cyclophosphamide, vinblastine, and prednisolone compared with giving cyclophosphamide, vinblastine, and prednisolone alone in treating young patients with stage IA or stage IIA nodular lymphocyte-predominant Hodgkin lymphoma.
Background: - Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a procedure that transplants bone marrow cells (stem cells) from a matching donor into a recipient in order to allow the donor stem cells to produce cells that will attack the recipient s cancer cells. AlloHSCT is performed when chemotherapy, immunotherapy, or radiation therapy do not adequately control cancer growth. However, cancers that are not controlled by alloHSCT frequently become resistant to other standard treatment options. - The outcomes of alloHSCT might be improved if certain kinds of white blood cells (T cells) could be manipulated so that they generate a more potent effect against the cancer cells. This effect can be augmented by genetically engineering donor T cells to specifically recognize cancerous cells in order to attack them. For this purpose, researchers are studying a specific kind of genetically engineered T cell known as the anti-CD19-CAR-transduced T cell. More research is needed to determine if this T cell will be an effective treatment for certain kinds of B cell cancer (such as non-Hodgkin s lymphoma and chronic lymphocytic leukemia) that has not been controlled with alloHSCT. Objectives: - To assess the safety and effectiveness of administering allogeneic anti-CD19-CAR-transduced T cells to patients with B-cell cancer that has not responded to alloHSCT. Eligibility: - Individuals between 18 and 75 years of age who have received allogeneic hematopoietic stem cell transplantation for a B cell cancer, but whose cancer has either not responded to or recurred after the transplant. - Recipients must have the same stem cell donor from their previous procedure. Design: - Before the start of the study, all participants will be screened with a medical history and blood tests. Recipients will have tumor imaging scans, additional blood tests, and other tests as directed by the study doctors. - Donor participants will undergo apheresis to provide white blood cells for researchers to use in the treatment. - Recipients will have dose escalation to determine the most effective yet safe dose of anti-CD19 T cells. There will be six dose levels of anti-CD19 T cells. The first patients enrolled will have the smallest dose, and the dose will be increased when a level has been determined to be safe. . - Recipients will be hospitalized for at least 9 days after receiving the cell infusion, and will need to come to clinic for follow-up visits 2, 4, 8, and 12 weeks after the infusion. - Additional scans and frequent blood tests will be required for the first 3 months after the infusion, followed by less frequent visits over time. - Recipients will be followed for a maximum of 15 years after receiving the infusion.
This investigator initiated trial was a prospective, open, single-arm, diagnostic-prognostic study. Patients who received high-dose therapy with autologous stem cell transplantation for the treatment of their lymphoproliferative disease were included into the study. After completion of the high-dose therapy (day -2 with respect to the stem cell transplantation) the first blood sample A for the cytocapacity test with determination of leukocytes and neutrophils was taken in the evening of day -1. Directly thereafter the study medication was administered. The second blood sample B for the cytocapacity test with determination of leukocytes and neutrophils was taken in the morning of day 0, 12-14 hours after administration of the study medication. Thereafter the stem cell re-infusion was performed. The primary objective of this study was to show that the cytocapacity test with lenograstim is a useful predictive tool with respect to the risk of post-transplant complications and prolonged myelosuppression, typically occurring after high-dose chemotherapy. The primary variables were: - the rate of patients with documented infections - the time to platelet engraftment
This study is designed to collect tissue samples that may aid in the treatment and learning about various oncology diagnosis.
This phase I/II trial studies the side effects and the best dose of lenalidomide when given together with temsirolimus and to see how well it works in treating patients with Hodgkin lymphoma or non-Hodgkin lymphoma that has come back after a period of improvement or is not responding to treatment. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Lenalidomide may also stop the growth of Hodgkin lymphoma or non-Hodgkin lymphoma by blocking blood flow to the cancer. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide together with temsirolimus may kill more cancer cells.
RATIONALE: Everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Lenalidomide may stop the growth of cancer cells by blocking blood flow to the cancer. Giving everolimus together with lenalidomide may be an effective treatment for lymphoma. PURPOSE: This phase I/II trial is studying the side effects and best dose of giving everolimus and lenalidomide together and to see how well they work in treating patients with relapsed or refractory non-Hodgkin or Hodgkin lymphoma.