View clinical trials related to Histiocytosis.
Filter by:This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
Langerhans cell histiocytosis (LCH) is a disease caused by clonal expansion, proliferation, and dissemination of cells that are phenotypically close to Langerhans cells in different tissues and organs. The clinical presentation of LCH varies greatly from one solid bone tumor to multisystem lesion that involves liver, spleen and bone marrow. The basis of LCH is the clonal proliferation of the pathological cells. These cells express CD1a and CD207 markers on their surface and originate from myeloid progenitors. The main event in life circle of these cells is the MEK-ERK cascade mutation. The most common mutation is the substitution of valine for glutamic acid in position 600 of BRAF gene. The influence of this mutation was confirmed by G.Badalyan-Very et al. in 2010. About 64% of all LCH are caused by clonal proliferation due to BRAF V600E mutation. Despite generally good results of therapy of monosystemic LCH, the treatment of LCH with risk organs lesion is still a challenge: 5-years survival is as low as 40-50%. Combination of cytarabine and 2-chlorodeoxyadenosine was supposed to improve the results, but the cost was a very high toxicity, that limits the application of the regimen in patients with severe infections. Currently, there is a lot of information on BRAF V600E inhibitors in patients with LCH and other histiocytic disorders. Most of them report the dramatic efficacy of BRAF V600E inhibitors but after quick effect patients usually burden minimal disease activity ("plateau" effect). However, discontinuation of the therapy results in quick disease reactivation. Considering this a trial that combines targeted therapy (vemurafenib) and low-dose chemotherapy (cytarabine and 2-chlorodeoxyadenosine) in order to achieve complete response with manageable toxicity is proposed.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
The investigators want to understand more about what kinds of health problems are caused by histiocytosis, what happens as a result of different treatments, and how ECD affects people's lives, their feelings and their attitudes. The investigators also want to learn how these things change over time for people with these conditions. To try to figure this out, doctors would like to collect information about people who have histiocytosis and how they are treated for this disease. Some participants will be asked to complete a brief interview over the telephone. Only a limited number of interviews will take place, and not everyone will be asked to participate in the interview. It is okay if the participant does not want to participate in the interview portion. If this is the case, the participant should let the study team member know when contacted.
This study is aiming to evaluate the efficacy of denosumab among adult patients suffering from Langerhans Cell Histiocytosis (LCH).
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.