Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT06043492
Other study ID # Endurance Training - Recovery
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date September 30, 2023
Est. completion date December 15, 2023

Study information

Verified date January 2024
Source University of Thessaly
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Aerobic capacity is critical for many athletes, especially for endurance athletes. Althgough several training methods are implemented by coaches to improve endurance performance, recovery following acute endurance training is not adequately studied. However, such information is crucial for coaches to effectively design the most favorable training program, to avoid muscle injuries and overtraining, and ultimately to improve performance of their athletes. This study aims to examine the acute effect of different continuous and HIIT training protocols on indices of metabolism, EIMD, neuromuscular fatigue and performance in middle- and long-distance runners.


Description:

Aerobic capacity is critical for many athletes, especially for endurance athletes. Endurance training leads to cardiopulmonary and musculoskeletal adaptations, which in turn lead to improvement of endurance performance. Several training methods have been established for the improvement of aerobic capacity and performance, including long distance and low speed training, and high intensity interval training (HIIT). Training methods are used depending on the kind of endurance that aim to improve, and the specific characteristics and energy demands of the event. Especially regarding middle- and long-distance runners, the energy comes mainly from the oxidative system, however, the contribution of the glycolytic pathway is equally important. Thus, improvement mainly of the low-intensity endurance, but also high-intensity endurance is important for these athletes. Additionally, both continuous endurance and HIIT are effective training methods for improving cardiorespiratory and metabolic function, and athletic performance, while evidence also exists in favor of HIIT being more effective. Thus both training methods are used by coaches to improve aerobic capacity and performance of their athletes. Coaches should be careful regarding the frequency of HIIT training during a microcycle, to provide adequate recovery between training sessions to avoid muscle injuries and overtraining. Existing evidence suggests that endurance exercise (continuous or HIIT) may result in exercise-induced muscle damage (EIMD), inflammatory responses, oxidative stress, and performance deterioration, yet, the timeframe of recovery of physiological and biochemical indices following different endurance training protocols has not been adequately studied. However, such information is crucial for coaches to effectively design the most favorable training program for their athletes. This study aims to examine the acute effect of different continuous and HIIT training protocols on indices of metabolism, EIMD, neuromuscular fatigue and performance in middle- and long-distance runners. According to a preliminary power analysis (a probability error of 0.05, and a statistical power of 80%), a sample size of 8 subjects per group was considered appropriate in order to detect statistically meaningful changes between groups. Thus, 10 men and female middle- and long-distance runners, will participate in the study. The study will be performed in a randomized, cross over, repeated measures design. During their first 1st and 2nd visit, all participants will sign an informed consent form after they will be informed about all the benefits and risks of the study and they will fill in and sign a medical history questionnaire. Fasting blood samples will be collected in order to estimate muscle damage concentration markers. Participants will be instructed by a dietitian how to record a 7-days diet recalls to ensure that they do not consume to greater extent nutrients that may affect EIMD and fatigue (e.g. antioxidants, amino acids, etc.) and to ensure that the energy intake during the trials will be the same. Assessment of body mass and body height, body composition, and aerobic capacity (VO2max), will be performed. Using a photocells system, countermovement jump will be performed to assess jump height, and 30 sec Bosco test to assess mean jump height, peak power, mean power, and fatigue index. The peak concentric, eccentric and isometric isokinetic torque of the knee flexors and extensors, in both limbs will be evaluated on an isokinetic dynamometer at 60°/sec. Maximal voluntary isometric contraction (MVIC) of the knee extensors at 65o in both limbs, as well as the fatigue rate during MVIC through the percent drop of peak torque between the first and the last three seconds of a 10-sec MVIC, will also be evaluated. Afterwards, participants will be randomly assigned into, and perform one of the three different conditions of the study design: a) Continuous running (CT) for 40 min at lactic threshold, b) High intensity interval training (HIIT): 10x2min running at vVO2max with active recovery at 40% της VO2max (interval:recovery 1:1) with a load of 10% of body weight (BW), and c) control condition, no training (measurements only). The training protocols will be matched for mean power and total duration (Tschakert and Hofmann 2013). Prior and immediately after each experimental trial, delayed onset of muscle soreness (DOMS) in the knee flexors (KF) and extensors (KE) of both limbs, as well as blood lactate will be assessed. Additionally, DOMS of KF and KE, peak concentric, eccentric and isometric isokinetic torque, CMJ height, as well as mean jump height, peak power, mean power, and fatigue index during a 30 sec Bosco test, will be assessed 24h, 48h and 72h after the end of the trial. MVIC of the knee extensors of both limbs, as well as the fatigue rate during MVIC will also be assessed at 1h, 2h and 3h, as well as 24h, 48h, and 72h after the end of the trial. Creatine kinase will be assessed at 24h, 48h, and 72h after the end of the trial. The exact above procedures will be repeated by the participants during the remaining two experimental trials. A 2-weeks wash-out period will be implemented between trials.


Recruitment information / eligibility

Status Completed
Enrollment 10
Est. completion date December 15, 2023
Est. primary completion date December 15, 2023
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 40 Years
Eligibility Inclusion Criteria: - Middle- and long-distance runners - Absence of musculoskeletal injuries (= 6 months) - No use of drugs or ergogenic supplements (= 1 month) - Absense from eccentric exercise (= 3 days) - No alcohol or ergogenic drinks consumption before each training protocol Exclusion Criteria: - Musculoskeletal injury (< 6 months) - Use of drugs or ergogenic supplements (< 1 month) - Participation in eccentric exercise (< 3 days) - Alcohol or ergogenic drinks consumption before the training protocol

Study Design


Related Conditions & MeSH terms


Intervention

Other:
High Intensity Interval Training
10 x 2 min running at vVO2max, interspersed by 2 min recovery at 40% VO2max
Coninuous Running
40 min continuous running at lactate threshold
Control Trial
The participants will perform only the baseline and post acute-training evaluations, without performing exercise

Locations

Country Name City State
Greece Department of Physical Education and Sport Science, Uninersity of Thessaly Trikala Thessaly

Sponsors (1)

Lead Sponsor Collaborator
University of Thessaly

Country where clinical trial is conducted

Greece, 

References & Publications (6)

Barnes KR, Kilding AE. Strategies to improve running economy. Sports Med. 2015 Jan;45(1):37-56. doi: 10.1007/s40279-014-0246-y. — View Citation

Brandao LHA, Chagas TPN, Vasconcelos ABS, de Oliveira VC, Fortes LS, de Almeida MB, Mendes Netto RS, Del-Vecchio FB, Neto EP, Chaves LMS, Jimenez-Pavon D, Da Silva-Grigoletto ME. Physiological and Performance Impacts After Field Supramaximal High-Intensity Interval Training With Different Work-Recovery Duration. Front Physiol. 2020 Oct 8;11:1075. doi: 10.3389/fphys.2020.01075. eCollection 2020. — View Citation

Cipryan L. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols. J Hum Kinet. 2017 Mar 15;56:139-148. doi: 10.1515/hukin-2017-0031. eCollection 2017 Feb. — View Citation

Esfarjani F, Laursen PB. Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport. 2007 Feb;10(1):27-35. doi: 10.1016/j.jsams.2006.05.014. Epub 2006 Jul 28. — View Citation

Hottenrott K, Ludyga S, Schulze S. Effects of high intensity training and continuous endurance training on aerobic capacity and body composition in recreationally active runners. J Sports Sci Med. 2012 Sep 1;11(3):483-8. eCollection 2012. — View Citation

Martinez-Ferran M, Cuadrado-Penafiel V, Sanchez-Andreo JM, Villar-Lucas M, Castellanos-Montealegre M, Rubio-Martin A, Romero-Morales C, Casla-Barrio S, Pareja-Galeano H. Effects of Acute Vitamin C plus Vitamin E Supplementation on Exercise-Induced Muscle Damage in Runners: A Double-Blind Randomized Controlled Trial. Nutrients. 2022 Nov 3;14(21):4635. doi: 10.3390/nu14214635. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Changes in Creatine kinase (CK) CK will be measured in plasma using a Clinical Chemistry Analyzer with commercially available kits. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in DOMS DOMS of knee extensors and knee flexors of both lower extremities will be measured during palpation of the muscle belly and the distal region after performing three repetitions of a full squat. Baseline (pre), post-, 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in blood lactate Lactate will be measured in capillary blood with a hand-portable analyzer. Baseline (pre), 4 minutes post-trial
Primary Changes in squat jump height Squat jump height will be measured with a photocells system. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in mean jump height during a 30 sec Bosco test Mean jump height will be measured with a photocells system. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in peak power during a 30 sec Bosco test Peak power will be measured with a photocells system. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in mean power during a 30 sec Bosco test Mean power will be measured with a photocells system. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in fatigue rate during a 30 sec Bosco test Fatigue rate will be estimated through the persent drop in mean jump height between the first 5 jumps and the last 5 jumps. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in maximal voluntary isometric contraction (MVIC) MVIC of the knee extensors and knee flexors will be measured on an isokinetic dynamometer. Baseline (pre), 1 hour post-, 2 hours post-, 3 hours post-, 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in peak concentric torque Concentric torque of the knee extensors and knee flexors will be measured on an isokinetic dynamometer. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Primary Changes in peak eccentric torque Eccentric torque of the knee extensors and knee flexors will be measured on an isokinetic dynamometer. Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial
Secondary Body weight Body weight will be measured on a beam balance with stadiometer. Baseline
Secondary Body height Body height will be measured on a beam balance with stadiometer. Baseline
Secondary Body mass index (BMI) BMI will be calculated from the ratio of body mass/ body height squared. Baseline
Secondary Body fat Body fat will be measured by using Dual-emission X-ray absorptiometry. Baseline
Secondary Lean body mass Lean body mass will be measured by using Dual-emission X-ray absorptiometry. Baseline
Secondary Dietary intake Dietary intake will be assessed using 7-day diet recalls. Baseline
Secondary Maximal oxygen consumption (VO2max) VO2max will be measured by open circuit spirometry via breath by breath method during a graded treadmill running protocol. Baseline
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05465057 - "HIIT Med Kiloene". N/A
Recruiting NCT06242223 - Multimodal HIIT in Speed, Agility and Performance Level N/A
Completed NCT03700671 - High Intensity Interval Training Versus Circuit Training N/A
Enrolling by invitation NCT05352334 - Comparison of High Intensity Interval Training Verses Aerobic Exercises on Emotional Intelligence of University Students N/A
Completed NCT04830995 - Insulin Sensitivity Response to High-Intensity Training in Insulin Resistance During Pregnancy N/A
Completed NCT04664101 - REmotely Monitored, Mobile Health-Supported High Intensity Interval Training After COVID-19 Critical Illness (REMM-HIIT-COVID-19) N/A
Completed NCT05981820 - High Intensity Interval Training, Creatine Intake and Anaerobic Power N/A
Completed NCT05137990 - The HIIT Cognition Study N/A
Completed NCT04863040 - The Impact of Activity Breaks on Cognitive Function, Adiposity and Fitness in Preschoolers N/A
Completed NCT03433690 - The Effect of HIIT in Handling Obesity in Children N/A
Completed NCT04815460 - Aerobic Interval and Moderate Continuous Exercise Training on Ventricular Functions N/A
Completed NCT05243784 - The MOVI-HIIT Pilot Trial: The Impact of Activity Breaks on Cognitive Function, Adiposity and Fitness in Preschoolers N/A
Completed NCT04084808 - Maple Products and Cognitive Performance During High Intensity Intermittent Exercise (HIIE) N/A
Recruiting NCT06131736 - Effects of High Intensity Interval Training and Cluster Training on Speed, Explosive Strength and Functional Performance N/A
Completed NCT04342390 - Effects of High-Intensity Interval Training Exercise in Adolescents With Hepatosteatosis N/A
Enrolling by invitation NCT05287594 - Feasibility of a Train-the-Trainer Delivered Exercise Intervention in Firefighters N/A
Recruiting NCT04733287 - Heat Therapy and Muscle Function Study N/A