View clinical trials related to Hepatosplenic T-cell Lymphoma.
Filter by:The purpose of this study is to evaluate how safe and effective the combination of the study drugs romidepsin and lenalidomide is for treating patients with peripheral t-cell lymphoma (PTCL) who have not been previously treated for this cancer. Currently, there is no standard treatment for patients with PTCL; the most common treatment used is a combination of drugs called CHOP, but this can be a difficult treatment to tolerate because of side effects, and is not particularly effective for most patients with PTCL. Romidepsin (Istodax®) is a type of drug called an HDAC inhibitor. It interacts with DNA (genetic material in cells) in ways that can stop tumors from growing. It is given as an infusion through the veins. Lenalidomide (Revlimid®) is a type of drug known as an immunomodulatory drug, or IMID for short. This drug affects how tumor cells grow and survive, including affecting blood vessel growth in tumors. It is given as an oral tablet (by mouth).
This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.
To collect and store blood and biopsy samples obtained from CD or UC patients exposed to adalimumab and diagnosed with Hepatosplenic T-cell Lymphoma (HSTCL), for the purpose of identifying potential biomarkers and genetic mutations in patients who have developed HSTCL.
This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
The purpose of this study is to evaluate how safe and effective the combination of two different drugs (brentuximab vedotin and rituximab) is in patients with certain types of lymphoma. This study is for patients who have a type of lymphoma that expresses a tumor marker called CD30 and/or a type that is associated with the Epstein-Barr virus (EBV-related lymphoma) and who have not yet received any treatment for their cancer, except for dose-reduction or discontinuation (stoppage) of medications used to prevent rejection of transplanted organs (for those patients who have undergone transplantation). This study is investigating the combination of brentuximab vedotin and rituximab as a first treatment for lymphoma patients
This study is designed to collect tissue samples from the biopsy specimen that was used to diagnose hepatosplenic T-cell lymphoma (HSTCL), additional patient information, and if possible, to obtain additional samples including a single blood sample, a buccal swab sample and/or a bowel tissue sample. Samples obtained will be stored by the sponsor for future testing. In addition, demographic and clinical patient information will be collected. The study will be conducted in North America. Patients eligible for enrollment include males or females with IBD of any age who have a confirmed diagnosis of HSTCL. Patients will be identified through the sponsor's adverse event reporting systems. Cases reported to the sponsor's Medical Information Center will be queried to ascertain if the reporter is interested in participating in the study. Where appropriate, cases may also be identified through the sponsor's new or on-going clinical trials and registries. Samples may be collected from living patients or from stored tissue of deceased patients. This study will not restrict or introduce any therapeutic interventions, including medications. All patients will continue to be managed by their personal physicians. No healthy subjects will be enrolled in this study.
This partially randomized clinical trial studies cholecalciferol in improving survival in patients with newly diagnosed cancer with vitamin D insufficiency. Vitamin D replacement may improve tumor response and survival and delay time to treatment in patients with cancer who are vitamin D insufficient.
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
This pilot phase 1-2 trial studies the side effects and best of dose ipilimumab when given together with local radiation therapy and to see how well it works in treating patients with recurrent melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. Monoclonal antibodies, such as ipilimumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Radiation therapy uses high energy x rays to kill cancer cells. Giving monoclonal antibody therapy together with radiation therapy may be an effective treatment for melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. - The phase 1 component ("safety") of this study is ipilimumab 25 mg monotherapy. - The phase 2 component ("treatment-escalation") of this study is ipilimumab 25 mg plus radiation combination therapy.