Clinical Trials Logo

Clinical Trial Summary

Patients will be receiving a stem cell transplant as treatment for their disease. As part of the stem cell transplant, patients will be given very strong doses of chemotherapy, which will kill all their existing stem cells. A close relative of the patient will be identified, whose stem cells are not a perfect match for the patient's, but can be used. This type of transplant is called "allogeneic", meaning that the cells are from a donor. With this type of donor who is not a perfect match, there is typically an increased risk of developing GvHD, and a longer delay in the recovery of the immune system. GvHD is a serious and sometimes fatal side-effect of stem cell transplant. GvHD occurs when the new donor cells (graft) recognize that the body tissues of the patient (host) are different from those of the donor. In this study, investigators are trying to see whether they can make special T cells in the laboratory that can be given to the patient to help their immune system recover faster. As a safety measure, we want to "program" the T cells so that if, after they have been given to the patient, they start to cause GvHD, we can destroy them ("suicide gene"). Investigators will obtain T cells from a donor, culture them in the laboratory, and then introduce the "suicide gene" which makes the cells sensitive to a specific drug called AP1903. If the specially modified T cells begin to cause GvHD, the investigators can kill the cells by administering AP1903 to the patient. We have had encouraging results in a previous study regarding the effective elimination of T cells causing GvHD, while sparing a sufficient number of T cells to fight infection and potentially cancer. More specifically, T cells made to carry a gene called iCasp9 can be killed when they encounter the drug AP1903. To get the iCasp9 gene into T cells, we insert it using a virus called a retrovirus that has been made for this study. The AP1903 that will be used to "activate" the iCasp9 is an experimental drug that has been tested in a study in normal donors with no bad side-effects. We hope we can use this drug to kill the T cells. The major purpose of this study is to find a safe and effective dose of "iCasp9" T cells that can be given to patients who receive an allogeneic stem cell transplant. Another important purpose of this study is to find out whether these special T cells can help the patient's immune system recover faster after the transplant than they would have otherwise.


Clinical Trial Description

If the patient is doing well after the stem cell transplant, and does not have severe GvHD, s/he will be eligible to receive the special "iCasp9" T cells from Day 30 to 90 after transplant. The specially selected and treated T cells will be given by vein (IV) once. This is a dose escalation study. This means that at the beginning, patients will be started on the lowest dose (1 of 5 different levels) of T cells. Once that dose schedule proves safe, the next group of patients will be started at a higher dose. This process will continue until all 5 dose levels are studied. If the side-effects are too severe, the dose will be lowered or the T cell injections will be stopped. If the patient develops GvHD after being given the specially treated T cells, we will prescribe AP1903, which has been shown to kill cells carrying the iCasp9 gene. This drug will be given as a 2-hour IV infusion. We will continue to follow the patient weekly in the bone marrow transplant clinic for the first month after the infusion, to check for side-effects of the treatment and for GvHD. The patient will have the standard tests performed that all patients have after transplant, even when not receiving special T cells. ;


Study Design


Related Conditions & MeSH terms

  • Acute Lymphoblastic Leukemia
  • Acute Myeloid Leukemia
  • Chronic Myelogenous Leukemia
  • Epstein Barr Virus Infection
  • Epstein-Barr Virus Infections
  • Familial Hemophagocytic Lymphohistiocytosis
  • Hemophagocytic Lymphohistiocytosis
  • Hemophagocytic Syndrome
  • Leukemia
  • Leukemia, Lymphoid
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive
  • Leukemia, Myeloid
  • Leukemia, Myeloid, Acute
  • Lymphohistiocytosis, Hemophagocytic
  • Lymphoma, Non-Hodgkin
  • Lymphoproliferative Disorders
  • Myelodysplastic Syndrome
  • Myelodysplastic Syndromes
  • Non Hodgkin Lymphoma
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma
  • Preleukemia
  • Suicide
  • Syndrome
  • Virus Diseases
  • X-linked Lymphoproliferative Disease

NCT number NCT01494103
Study type Interventional
Source Baylor College of Medicine
Contact
Status Active, not recruiting
Phase Phase 1
Start date November 2011
Completion date May 2029

See also
  Status Clinical Trial Phase
Recruiting NCT05400122 - Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer Phase 1
Recruiting NCT04460235 - Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma Phase 4
Completed NCT03678493 - A Study of FMT in Patients With AML Allo HSCT in Recipients Phase 2
Completed NCT04022785 - PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Phase 1
Recruiting NCT05424562 - A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
Completed NCT03197714 - Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia Phase 1
Terminated NCT03224819 - Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML) Early Phase 1
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Active, not recruiting NCT04070768 - Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113 Phase 1
Active, not recruiting NCT04107727 - Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML) Phase 2
Recruiting NCT04920500 - Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients N/A
Recruiting NCT04385290 - Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC) Phase 1/Phase 2
Recruiting NCT03897127 - Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics Phase 3
Active, not recruiting NCT04021368 - RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome Phase 1
Recruiting NCT03665480 - The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML Phase 2/Phase 3
Completed NCT02485535 - Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant Phase 1
Enrolling by invitation NCT04093570 - A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers Phase 2
Recruiting NCT04069208 - IA14 Induction in Young Acute Myeloid Leukemia Phase 2
Recruiting NCT05744739 - Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML) Phase 1
Recruiting NCT04969601 - Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings Phase 1/Phase 2