View clinical trials related to Hemoglobinopathies.
Filter by:This study tests the clinical outcomes of one of two preparative regimens (determined by available donor source) in patients with non-malignant hemoglobinopathies. The researchers hypothesize that these regimens will have a positive effect on post transplant engraftment and the incidence of graft-versus-host-disease. Regimen A2 has replaced Regimen A in this study. Two patients were treated on Regimen A but did not have evidence of initial engraftment thus triggering the stopping rule for that arm of this study.
The purpose of this study is to determine if treatment with reduced-dose busulfex, fludarabine and alemtuzumab (CAMPATH) followed by sten cell infusion will allow for donor stem cells to grow in patients with hemoglobinopathies bone marrow and restore circulating blood counts. In addition the incidence and severity of side effects and of graft vs. host disease (GVHD) will be monitored.
This study will examine blood for factors that may cause or prevent diseases involving iron or red blood cells. Iron is an important nutrient for human health that is needed to produce red blood cells. Red blood cells carry oxygen to body tissues. A better understanding of iron and red blood cells may help lead to better treatment of several diseases including anemia. Patients of all ages with red cell abnormalities in the following categories may be eligible for this study: - Diseases with deficiency, overload or maldistribution of iron - Known red blood cell diseases, such as anemias and hemoglobinopathies - Red blood cell diseases of unknown cause, such as hemolysis of unknown cause - Red blood cell abnormalities with no overt clinical disease, such as hereditary persistence of fetal hemoglobin Participants undergo the following procedures: - Medical history - Physical examination - Standard medical tests related to the individual's iron or red blood cell condition Blood draw for the following purposes: - Testing for syphilis and for the hepatitis B and C, HIV, and HTLV-1viruses, and for a pregnancy test for women who can become pregnant - Research purposes. This blood is analyzed for genes, proteins, sugars, and fat molecules.
The major goal of this study is to determine the risks and benefits of bone marrow transplants in patients with severe thalassemia or sickle cell disease. Participation in this project will be for two years.
The major goal of this study is to determine the risks and benefits of stem cell transplants in combination with a newer, less toxic conditioning chemotherapy treatment in patients with severe sickle cell disease (SCD) or sickle hemoglobin variants (hemoglobin SC or hemoglobin SB0/+), or homozygous b0/+ thalassemia or severe B0/+ thalassemia variants. Participation in this project will be for one year, with follow up evaluations done every 6 months thereafter for 10 years or until participants are 18 years old.
The purpose of this study is to find out if using a lower dose of chemotherapy before stem cell transplantation can cure patients of sickle cell anemia or thalassemia while causing fewer severe side effects than conventional high dose chemotherapy with transplantation.
RATIONALE: Although used primarily to treat malignant disorders of the blood, allogeneic stem cell transplantation can also cure a variety of non-cancerous, inherited or acquired disorders of the blood. Unfortunately, the conventional approach to allogeneic stem cell transplantation is a risky procedure. For some non-cancerous conditions, the risks of this procedure outweigh the potential benefits. This protocol is designed to test a new approach to allogeneic stem cell transplantation. It is hoped that this approach will be better suited for patients with non-cancerous blood and bone marrow disorders.
This 12-month study will evaluate the safety and effectiveness of hydroxyurea in treating beta-thalassemia, a type of anemia caused by defective hemoglobin (the oxygen-carrying pigment in blood). Hemoglobin is composed of two protein chains-alpha globin chains and beta globin chains; patients with beta-thalassemia do not make beta globin. Patients often require frequent red blood cell transfusions. This leads to iron overload, which, in turn, requires iron chelation therapy (removal of iron from the blood). Some drugs, including hydroxyurea, can stimulate production of a third type of protein chain called gamma chains. In the womb, the fetus makes this type of protein instead of beta globin. It is not until after birth, when the fetus no longer produces gamma globin that the beta globin deficiency becomes apparent. Gamma chain synthesis improves hemoglobin and red blood cell production, correcting the anemia. This study will determine if and at what dose hydroxyurea treatment reduces patients' need for red blood cell transfusions and whether certain factors might predict which patients are likely benefit from this treatment. Patients 15 years and older with moderately severe beta-thalassemia may be eligible for this study. Participants will take hydroxyurea daily at a dose calculated according to the patient's body size. Blood will be drawn weekly to measure blood cell and platelet counts. The drug dosage may be increased after 12 weeks of treatment and again after 24 weeks if the white cell and platelet counts remain stable. Patients who respond dramatically to treatment may continue to receive hydroxyurea for up to 3 years.
To determine whether hydroxyurea prevents the onset of chronic end organ damage in young children with sickle cell anemia.
To determine whether deferoxamine prevented the complications of transfusional iron overload.