View clinical trials related to Hemangiopericytoma.
Filter by:The purpose of this study is to determine the response rate and overall survival in patients that have been diagnosed with mesothelioma and will undergo chemotherapy, surgery and intensity modified radiation therapy (IMRT) as part of their standard of care.
The purpose of this study is to determine whether radiation therapy decreases tumor size and tumor spread. The investigators will consent subjects that have been diagnosed with mesothelioma and will undergo radiation therapy followed by surgical resection as their standard of care. The investigators will collect data from past and future medical records as well as data regarding their health status for their lifetime by reviewing life status, treatment status and CT scans.
This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
Phase II, open-label, non-randomized, international multicenter clinical trial with two strata (SFT and EMC). 8 sites in Spain, 5 sites in Italy and 5 sites in France. Patients will receive oral pazopanib at 800 mg once daily continuously. Patients will continue to receive treatment until there is evidence of progressive disease, unacceptable toxicity, non-compliance, withdrawn consent or investigator decision. The main goal is to determine the objective response rate (ORR) (confirmed complete response [CR] and partial response [PR]) in patients with unresectable, locally advanced or metastatic solitary fibrous tumor and extraskeletal myxoid chondrosarcoma, using Choi and RECIST 1.1 criteria respectively.
This randomized phase II trial studies how well gemcitabine hydrochloride works with or without pazopanib hydrochloride in treating patients with refractory soft tissue sarcoma. Drugs used in chemotherapy, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Pazopanib hydrochloride may also stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether gemcitabine hydrochloride is more effective with or without pazopanib hydrochloride in treating patients with soft tissue sarcoma.
This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase II trial is studying how well bevacizumab works in treating patients with recurrent or progression meningiomas.
This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.
This is a Feasibility/Phase II study for patients with a diagnosis of WHO Grade I - III Meningioma & Hemangiopericytoma brain cancer to be given standard dose Proton radiotherapy. The study will be performed in two phases: first, feasibility with an enrollment of 12 patients and then Phase Page 8 of 20 II, with an enrollment of an additional 38 patients. All patients will also be given quality of life (QOL) instruments pretreatment, weekly during treatment, then q 3 months for year 1 post treatment, q6 months year 2 & 3 and yearly for year 4 & 5. Comparisons will be made between the enrolled subjects receiving proton therapy and the known literature on photon radiation. See section 2 for full objectives. The second phase will begin no earlier than 60 days after the last patient in the initial phase has completed treatment and once safety and feasibility has been verified. The secondary objectives will serve as the objectives for the second phase of the study.
RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Donor T cells that are treated in the laboratory may be effective treatment for malignant glioma. Aldesleukin may stimulate the white blood cells to kill tumor cells. Combining different types of biological therapies may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best way to give therapeutic donor lymphocytes together with aldesleukin in treating patients with stage III or stage IV malignant glioma.