Healthy Volunteers Only Clinical Trial
Official title:
Calibration of Non-Invasive Non-Ionizing Imaging Techniques to Study Vasculature of Healthy Volunteers
This study will explore the uses of three noninvasive imaging techniques-thermography, laser
Doppler imaging, and multispectral imaging-to test the blood flow of healthy volunteers. By
comparing these three techniques, researchers will be able to train these imaging systems to
better evaluate skin types and blood flow. The study will also test computer programs that
have been developed to correct for the effects of curvature and body hair on the images.
Healthy volunteers must be older than 18 years of age and may not have had a history of
malignant tumors, skin disease, or vascular disease.
Participants will undergo the following procedures on an outpatient basis:
Three different types of images taken of the participant s forearm
- Thermography infrared thermal imaging to map skin temperature
- Laser Doppler imaging low-powered laser imaging to map blood flow in the skin
- Multispectral imaging near-infrared light imaging to measure total blood flow and oxygen
levels in the skin
A reactive hyperemia experiment, in which multispectral images will be taken of the
participant s forearm during and after the use of a blood pressure cuff
A hair removal experiment, in which images will be collected of the participant s forearm in
separate scans done before and after the hair is removed with a topical hair removal solution
The entire series of exams will take approximately one hour to perform.
This study is designed to calibrate three non-invasive and non-ionizing imaging techniques on
12 healthy volunteers. The three imaging techniques-- thermography, laser Doppler imaging and
multi-spectral imaging-- have been approved since 2001 for four clinical protocols already
approved by the NIH/NCI IRB for use on patients with Kaposi s sarcoma (KS). However, as our
laboratory continues to study and analyze the images collected on these protocols, we have
found that our analysis algorithms require some additional data from healthy volunteers.
We aim to use the information we gather from healthy volunteers on this protocol to train our
imaging systems and calibrate our analysis methods to validate the results of the KS data
already collected. We aim to study different skin types, such as Caucasian, Asian and African
American, so that we can calibrate the melanin input value in our multi-spectral imaging
reconstruction algorithm. We also need to study the vasculature networks in the forearms of
the volunteers to compare to 'normal' values in the literature for the parameters we are
exploring, including temperature, vasculature, blood volume and blood oxygenation to validate
our reconstruction algorithm. We will also perform experiments of reactive hyperemia, where
the arm of the volunteer is occluded with an arm pressure cuff for five minutes, to study how
blood volume and blood oxygenation change during the experiment. Trends of
increasing/decreasing blood volume and blood oxygenation can also be compared with published
literature to validate our reconstruction algorithm.
Since we started collecting data from the KS patients, we have noticed that hair and
curvature of the surface of the skin interfere with our analysis techniques as well.
Therefore, we aim to assess algorithms developed to remove the effects of curvature and hair
on the images as part of our image analysis training. The intensity in the images is affected
by the curvature and must be corrected. We have developed algorithms to correct for this
curvature, but need to study normal disease-free skin to make sure that the values for blood
volume and blood oxygenation remain the same after the curvature correction is performed. We
also plan to collect images from a healthy volunteer s arm, remove the hair from the arm
using a topical hair removal solution, and then image the arm again. With this information,
we can optimize our hair removal algorithm. Combining all of the aforementioned information
will allow us to develop a non-invasive strategy for repeated serial assessments of tissue
vasculature.
When following KS lesions over time, the vascular / metabolic changes in the lesion are
important. An additional parameter is of interest when following the treatment over time,
which is the structure of the lesion. Optical Coherence Tomography (OCT) is a non-invasive,
non-contact optical imaging technology, which provides this desired structural information
with high resolution and in three dimensions (3D) over the area of interest. Therefore we aim
to combine OCT with multi-spectral data, relating the metabolic state of the tissue with
structure. By doing this, we hypothesize that we can not only get deeper understanding of
tissue vasculature, but that we can also improve the multi-spectral imaging modality, by
using the structure as prior information for the reconstruction.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT02544035 -
Determining Age Appropriateness of Children's Products and Toys
|
N/A | |
Completed |
NCT02769988 -
Educational Impact of the NLM/National Area Health Education Center Organization (NAO) Project-SHARE Based Teen Health Information Literacy Curriculum
|
||
Completed |
NCT06220877 -
Efficacy of Buccal Pad of Fat, Advanced Platelet Rich Fibrin, Fibrin Glue and Oxidized Cellulose Plug in Management of Oro-Antral Communication, Comparative Clinical Study
|
N/A | |
Not yet recruiting |
NCT06334653 -
Exercise-regulated Organ Crosstalk, Influence of IL-6
|
N/A | |
Recruiting |
NCT06402136 -
Evaluation Safety, Tolerability, and Pharmacokinetics of Single and Multiple Ascending Doses of 83-0060 in Healthy Volunteers
|
Phase 1 |