Clinical Trials Logo

Healthy Subjects clinical trials

View clinical trials related to Healthy Subjects.

Filter by:

NCT ID: NCT01102634 Recruiting - Healthy Subjects Clinical Trials

Effects of Acu-Transcutaneous Electrical Nerve Stimulation (Acu-TENS) on Post-exercise Blood Lactate and Excessive Post-exercise Oxygen Consumption (EPOC)

Start date: April 2010
Phase: N/A
Study type: Interventional

The study aims to investigate the effect of Acu-TENS on post-exercise blood lactate level and EPOC

NCT ID: NCT01025011 Recruiting - Anemia Clinical Trials

Non-invasive Measurement of Hemoglobin in Retinal Arteries

Start date: March 2008
Phase: N/A
Study type: Observational

The purpose of this study is to test a new non-invasive tool to measure hemoglobin in retinal arteries.

NCT ID: NCT00949195 Recruiting - Healthy Subjects Clinical Trials

Pulmonary Arterial Pressure Response During Exercise

PAPCOPDHS
Start date: September 2009
Phase: N/A
Study type: Observational

Background: The extent of increase in systolic pulmonary arterial pressure (PAPs) during exercise in patients with COPD is unpredictable from lung function data. The non-invasive assessment of pulmonary hemodynamics during exercise and flow-mediated vasodilatation measurement may give useful data in the rehabilitation of COPD patients. Methods: Patients with stable, severe COPD and healthy, age-matched subjects (H) perform semi supine echocardiography with PAPs measurement. COPD patients perform ramp protocol with gas exchange detection. Serum hsCRP level is also determined in COPD patients. Endothel dysfunction is detected by flow mediated vasodilation measurement after arm strangulation with Doppler ultrasonography. Primary endpoint: The degree of pulmonary artery systolic pressure change during exercise? Secondary endpoint: 1. The degree of right ventricular function change during exercise? 2. Is endothel dysfunction manifested with pulmonary artery pressure rise? 3. What is the correlation between the systemic inflammatory marker hsCRP and the degree of pulmonary artery pressure rise?

NCT ID: NCT00364728 Recruiting - Clinical trials for Rheumatoid Arthritis

Efferocytosis and Genomic Polymorphism in Autoimmune Diseases

Start date: January 2006
Phase: N/A
Study type: Observational

Over the past few years, growing evidences revealed that clearance of apoptotic cells by phagocytosis can result in powerful anti-inflammatory and immunosuppressive effects. In vivo, apoptotic cells are cleared rapidly by neighboring cells, macrophages and related scavengers. Defective clearance of apoptotic cells has been linked closely to autoimmunity and persistent inflammatory disease. Several phagocytic receptors, bridging molecules produced by phagocytes and 'eat-me' signals on apoptotic cells are coordinately involved in mediating clearance of apoptotic cells. Complement receptors (CR3, CR4), collection, CD14, CD36 (Class B scavenger receptor), class A scavenger receptor, asialoprotein receptor, Mer receptor kinase were reported to recognize apoptotic cells. The best characterized system for clearance of apoptotic cells is the recognition of phosphatidylserine (PS) on apoptotic cells by phosphatidylserine receptor (PSR). Milk fat globule- epidermal growth factor 8 (MFG-E8) is an opsonin that bridges phagocytes (by interacting with α vβ3, αvβ5 integrins via RGD motif) and apoptotic cells (by binding PS through Factor V/VIII-C domain). Activated macrophages produce and secret MFG-E8. MFG-E8 is a critical component in PSR-mediated phagocytosis of apoptotic cells. The dominant negative mutant MFG-E8, D89E, that carried a mutated RGD motif inhibited phagocytosis of apoptotic cells in vitro. Injection of D89E into wild type mice induced autoantibodies and IgG deposition on glomeruli. Macrophages from MFG-E8 deficiency (MFG-E8-/-) mice were impaired in engulfment of apoptotic cells, which can be restored by adding recombinant MFG-E8. The female MFG-E8-/- mice spontaneously produced high titer of autoantibodies and developed lupus-like glomerulonephritis at the age of week 40. Defective clearance of apoptotic cells is closely related to development of autoimmunity. In the past 4 years, a growing number of molecules were recognized as receptors for the PS exposed on the apoptotic cells. These molecules were capable of mediating phagocytic clearance, rendering anti-inflammatory cytokines in the phagocytes, and modulating T cell responses. The specific aim of this proposal is to study genetic polymorphism in MFG-E8, PSR and other factors implicated in phagocytic clearance of apoptotic cells among Taiwanese. By comparing the polymorphism between patients with autoimmune disease (SLE or RA) and healthy control subjects, we will investigate if genetic variations among individuals of genes encoding proteins involved in clearance of apoptotic cells contribute to the pathogenesis of systemic autoimmune diseases SLE and RA.