Health Promotion Clinical Trial
— DIWAHOfficial title:
Design of an Intelligent Wearable to Assess Physical Activity and Health Related Outcomes - the DIWAH Study
Verified date | December 2023 |
Source | Linnaeus University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Physical activity (PA) is one of the few behaviors that individuals can change on their own, incurring minimal costs while simultaneously yielding significant health benefits. Over the past decade, new methods have been developed to measure both physical activity and associated health outcomes, such as blood pressure. Notably, there has been an explosive development of so-called wearables, including smartwatches and activity trackers. Wearables are equipped with multiple sensors that measure various aspects of PA, such as steps and heart rate, as well as cardiovascular health indicators like blood pressure and oxygen saturation. Therefore, wearables can be viewed as Swiss army knives with many tools in one instrument. They are highly popular in the fitness industry, but their role in healthcare is appropriately limited. However, most wearables on the market have several disadvantages that make them unsuitable for use, even among healthy individuals. Several studies have revealed that they do not produce reliable or valid data for metrics like pulse, steps, and PA-related energy expenditure. Furthermore, they are primarily designed for the fitness market, not for use within healthcare systems or as support for behavior change, and they have not been transparently evaluated. Additionally, the algorithms translating signals from sensors into interpretable outcomes are often trade secrets. Worse still, they are updated and modified at irregular intervals, making it challenging to compare outcomes over time. Other significant limitations include questionable patient confidentiality, as data is often uploaded to companies' cloud services. While research monitors are more flexible and transparent compared to commercial wearables, they lack essential features for daily use that are crucial in healthcare environments, such as the ability to communicate with the user. Currently, both commercial and research monitors cannot assess PA on an individual level, as they only utilize a limited portion of the rich data collected. Therefore, it is not surprising that their implementation in clinical care remains a challenge. Given the plethora of new products entering the market without documented validity, it is crucial to provide consumers, patients, healthcare professionals, and researchers with a transparent, evidence-based wearable. Against this backdrop, an interdisciplinary research group with the ambitious goal of developing and testing a high-functioning wearable tailored for use in healthcare-an e-physiotherapist (as opposed to commercial wearables targeting the fitness market-an "e-personal trainer") have been formed. In this project, the focus is on measuring PA, blood pressure, and energy consumption, as they represent some of the most significant risk factors for mortality and morbidity, namely inactivity, hypertension, and obesity. The overall goal of this project is to develop and validate AI-based algorithms for individually measuring various aspects of physical activity (PA), heart rate, energy expenditure, and blood pressure in laboratory settings as well as in everyday conditions. These algorithms represent a significant advancement compared to previous methods. In the case of PA metrics from accelerometry, current approaches rely on cut-points (threshold values) to define the intensity of PA. These cut-points are absolute, and individual variations in biology and biomechanics increase the risk of serious misclassification. To estimate intensity using heart rate, it is well-known that both resting heart rate and maximum heart rate are relative, requiring individual calibration for accurate measurements-essential even for accelerometry if one aims to measure PA on an individual level, a step not commonly taken today. Furthermore, heart rate is influenced by factors beyond PA, such as emotions and medication. To address these issues, combining information from accelerometry (biomechanics) and heart rate (physiological response), enhancing the ability to identify individual intensity and energy expenditure of PA. In this project, artificial intelligence (AI) and machine learning (ML) will be employed to analyze the collected data and predict the intensity of PA. If the proposed method demonstrates the ability to measure PA and blood pressure at an individual level, the project will proceed. Our intention is to use AI/ML to combine PA information with blood pressure data, creating a self-learning system capable of suggesting an appropriate dose of PA to optimize blood pressure. This approach has not been studied yet, likely due to the complexity of obtaining and analyzing these data. However, the technology, processing power, and analysis tools are now available, making it timely to investigate its feasibility.
Status | Enrolling by invitation |
Enrollment | 50 |
Est. completion date | December 31, 2027 |
Est. primary completion date | May 1, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: - Being able to jog for 30 consecutive minutes Exclusion Criteria: - Known heart condition |
Country | Name | City | State |
---|---|---|---|
Sweden | Linneaus University | Kalmar | Kalmar Lan |
Lead Sponsor | Collaborator |
---|---|
Linnaeus University |
Sweden,
Ahmadi MN, Chowdhury A, Pavey T, Trost SG. Laboratory-based and free-living algorithms for energy expenditure estimation in preschool children: A free-living evaluation. PLoS One. 2020 May 20;15(5):e0233229. doi: 10.1371/journal.pone.0233229. eCollection 2020. — View Citation
Aromatario O, Van Hoye A, Vuillemin A, Foucaut AM, Crozet C, Pommier J, Cambon L. How do mobile health applications support behaviour changes? A scoping review of mobile health applications relating to physical activity and eating behaviours. Public Health. 2019 Oct;175:8-18. doi: 10.1016/j.puhe.2019.06.011. Epub 2019 Jul 30. — View Citation
Arvidsson D, Fridolfsson J, Borjesson M. Measurement of physical activity in clinical practice using accelerometers. J Intern Med. 2019 Aug;286(2):137-153. doi: 10.1111/joim.12908. Epub 2019 Apr 16. — View Citation
Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH, Marvel FA, Martin SS, Muse ED, Turakhia MP, Tarakji KG, Elshazly MB. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021 Aug;18(8):581-599. doi: 10.1038/s41569-021-00522-7. Epub 2021 Mar 4. — View Citation
Bergman P, Hagstromer M. No one accelerometer-based physical activity data collection protocol can fit all research questions. BMC Med Res Methodol. 2020 Jun 3;20(1):141. doi: 10.1186/s12874-020-01026-7. — View Citation
Bergman P. The number of repeated observations needed to estimate the habitual physical activity of an individual to a given level of precision. PLoS One. 2018 Feb 1;13(2):e0192117. doi: 10.1371/journal.pone.0192117. eCollection 2018. — View Citation
Brage S, Brage N, Franks PW, Ekelund U, Wong MY, Andersen LB, Froberg K, Wareham NJ. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol (1985). 2004 Jan;96(1):343-51. doi: 10.1152/japplphysiol.00703.2003. Epub 2003 Sep 12. — View Citation
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020 Dec;54(24):1451-1462. doi: 10.1136/bjsports-2020-102955. — View Citation
Galán-Mercant, A., Ortiz, A., Herrera-Viedma, E., Tomas, M. T., Fernandes, B. & Moral-Munoz, J. A. Assessing physical activity and functional fitness level using convolutional neural networks. Knowledge-Based Systems 185 (2019).
Garatachea N, Torres Luque G, Gonzalez Gallego J. Physical activity and energy expenditure measurements using accelerometers in older adults. Nutr Hosp. 2010 Mar-Apr;25(2):224-30. — View Citation
Gillinov S, Etiwy M, Wang R, Blackburn G, Phelan D, Gillinov AM, Houghtaling P, Javadikasgari H, Desai MY. Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise. Med Sci Sports Exerc. 2017 Aug;49(8):1697-1703. doi: 10.1249/MSS.0000000000001284. — View Citation
Greiwe J, Nyenhuis SM. Wearable Technology and How This Can Be Implemented into Clinical Practice. Curr Allergy Asthma Rep. 2020 Jun 6;20(8):36. doi: 10.1007/s11882-020-00927-3. — View Citation
Hamid A, Duncan MJ, Eyre ELJ, Jing Y. Predicting children's energy expenditure during physical activity using deep learning and wearable sensor data. Eur J Sport Sci. 2021 Jun;21(6):918-926. doi: 10.1080/17461391.2020.1789749. Epub 2020 Jul 16. — View Citation
Heesch KC, Hill RL, Aguilar-Farias N, van Uffelen JGZ, Pavey T. Validity of objective methods for measuring sedentary behaviour in older adults: a systematic review. Int J Behav Nutr Phys Act. 2018 Nov 26;15(1):119. doi: 10.1186/s12966-018-0749-2. — View Citation
Hochberg I, Feraru G, Kozdoba M, Mannor S, Tennenholtz M, Yom-Tov E. Encouraging Physical Activity in Patients With Diabetes Through Automatic Personalized Feedback via Reinforcement Learning Improves Glycemic Control. Diabetes Care. 2016 Apr;39(4):e59-60. doi: 10.2337/dc15-2340. Epub 2016 Jan 28. No abstract available. — View Citation
Hosanee M, Chan G, Welykholowa K, Cooper R, Kyriacou PA, Zheng D, Allen J, Abbott D, Menon C, Lovell NH, Howard N, Chan WS, Lim K, Fletcher R, Ward R, Elgendi M. Cuffless Single-Site Photoplethysmography for Blood Pressure Monitoring. J Clin Med. 2020 Mar 7;9(3):723. doi: 10.3390/jcm9030723. — View Citation
Jensen MT, Treskes RW, Caiani EG, Casado-Arroyo R, Cowie MR, Dilaveris P, Duncker D, Di Rienzo M, Frederix I, De Groot N, Kolh PH, Kemps H, Mamas M, McGreavy P, Neubeck L, Parati G, Platonov PG, Schmidt-Trucksass A, Schuuring MJ, Simova I, Svennberg E, Verstrael A, Lumens J. ESC working group on e-cardiology position paper: use of commercially available wearable technology for heart rate and activity tracking in primary and secondary cardiovascular prevention-in collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee. Eur Heart J Digit Health. 2021 Feb 8;2(1):49-59. doi: 10.1093/ehjdh/ztab011. eCollection 2021 Mar. — View Citation
Jones PJ, Catt M, Davies MJ, Edwardson CL, Mirkes EM, Khunti K, Yates T, Rowlands AV. Feature selection for unsupervised machine learning of accelerometer data physical activity clusters - A systematic review. Gait Posture. 2021 Oct;90:120-128. doi: 10.1016/j.gaitpost.2021.08.007. Epub 2021 Aug 13. — View Citation
Keadle SK, Lyden KA, Strath SJ, Staudenmayer JW, Freedson PS. A Framework to Evaluate Devices That Assess Physical Behavior. Exerc Sport Sci Rev. 2019 Oct;47(4):206-214. doi: 10.1249/JES.0000000000000206. — View Citation
Liu F, Wanigatunga AA, Schrack JA. Assessment of Physical Activity in Adults Using Wrist Accelerometers. Epidemiol Rev. 2022 Jan 14;43(1):65-93. doi: 10.1093/epirev/mxab004. — View Citation
Montoye AHK, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior. AIMS Public Health. 2016 May 20;3(2):298-312. doi: 10.3934/publichealth.2016.2.298. eCollection 2016. — View Citation
Montoye AHK, Westgate BS, Fonley MR, Pfeiffer KA. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. J Appl Physiol (1985). 2018 May 1;124(5):1284-1293. doi: 10.1152/japplphysiol.00760.2017. Epub 2018 Jan 25. — View Citation
Muhlen JM, Stang J, Lykke Skovgaard E, Judice PB, Molina-Garcia P, Johnston W, Sardinha LB, Ortega FB, Caulfield B, Bloch W, Cheng S, Ekelund U, Brond JC, Grontved A, Schumann M. Recommendations for determining the validity of consumer wearable heart rate devices: expert statement and checklist of the INTERLIVE Network. Br J Sports Med. 2021 Jul;55(14):767-779. doi: 10.1136/bjsports-2020-103148. Epub 2021 Jan 4. — View Citation
Narayanan A, Desai F, Stewart T, Duncan S, Mackay L. Application of Raw Accelerometer Data and Machine-Learning Techniques to Characterize Human Movement Behavior: A Systematic Scoping Review. J Phys Act Health. 2020 Mar 1;17(3):360-383. doi: 10.1123/jpah.2019-0088. — View Citation
Oja, P. & Tuxworth, B. Eurofit for adults. Assessment of health-related fitness. Strasbourg: Council of Europe-UKK Institute, Tampere. (1995).
Peake JM, Kerr G, Sullivan JP. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Front Physiol. 2018 Jun 28;9:743. doi: 10.3389/fphys.2018.00743. eCollection 2018. — View Citation
Phillips LJ, Petroski GF, Markis NE. A Comparison of Accelerometer Accuracy in Older Adults. Res Gerontol Nurs. 2015 Sep-Oct;8(5):213-9. doi: 10.3928/19404921-20150429-03. Epub 2015 May 7. — View Citation
Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991 Feb;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x. — View Citation
Rastogi T, Backes A, Schmitz S, Fagherazzi G, van Hees V, Malisoux L. Advanced analytical methods to assess physical activity behaviour using accelerometer raw time series data: a protocol for a scoping review. Syst Rev. 2020 Nov 7;9(1):259. doi: 10.1186/s13643-020-01515-2. — View Citation
Sheng, B., Moosman, O. M., Del Pozo-Cruz, B., Del Pozo-Cruz, J., Alfonso-Rosa, R. M. & Zhang, Y. A comparison of different machine learning algorithms, types and placements of activity monitors for physical activity classification. Measurement 154, 107480 (2020).
Stewart T, Narayanan A, Hedayatrad L, Neville J, Mackay L, Duncan S. A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults. Med Sci Sports Exerc. 2018 Dec;50(12):2595-2602. doi: 10.1249/MSS.0000000000001717. — View Citation
van Kuppevelt D, Heywood J, Hamer M, Sabia S, Fitzsimons E, van Hees V. Segmenting accelerometer data from daily life with unsupervised machine learning. PLoS One. 2019 Jan 9;14(1):e0208692. doi: 10.1371/journal.pone.0208692. eCollection 2019. — View Citation
Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017 Jul;117(7):1277-1285. doi: 10.1007/s00421-017-3641-x. Epub 2017 May 15. — View Citation
Wijkman M, Carlsson M, Darwiche G, Nystrom FH. A pilot study of hypertension management using a telemedicine treatment approach. Blood Press Monit. 2020 Feb;25(1):18-21. doi: 10.1097/MBP.0000000000000413. — View Citation
Willetts M, Hollowell S, Aslett L, Holmes C, Doherty A. Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Sci Rep. 2018 May 21;8(1):7961. doi: 10.1038/s41598-018-26174-1. Erratum In: Sci Rep. 2022 Apr 11;12(1):6024. — View Citation
Wong CK, Mentis HM, Kuber R. The bit doesn't fit: Evaluation of a commercial activity-tracker at slower walking speeds. Gait Posture. 2018 Jan;59:177-181. doi: 10.1016/j.gaitpost.2017.10.010. Epub 2017 Oct 9. — View Citation
Wright SP, Hall Brown TS, Collier SR, Sandberg K. How consumer physical activity monitors could transform human physiology research. Am J Physiol Regul Integr Comp Physiol. 2017 Mar 1;312(3):R358-R367. doi: 10.1152/ajpregu.00349.2016. Epub 2017 Jan 4. — View Citation
* Note: There are 37 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Energy expenditure | Assessment of energy expenditure using indirect calorimetry during rest and during an incremental aerobic test as criteriium measure to be compared with the acceleomter and optical signals from the wearables. | Testing of a single subject takes approximately 1,5 hours | |
Primary | Physical activity intensity | The relative intensity of physical activity. Criterion measure is indirect calorimetry and heart rate from heart rate monitor. Criterium measure will be compared to signals from the optical sensor and the accelerometer in the wearables. | Testing of a single subject takes approximately 1,5 hours | |
Primary | Steps | The number of steps taken. Criterion measure is the research grade monitor which will be compared to thhe signals from the accelerometer in the wearables. | Testing of a single subject takes approximately 1,5 hours | |
Primary | Heart rate | Assessment of heart rate. The optical signal from the wearables will be compared to the criterion measures of the heart rate monitor. | Testing of a single subject takes approximately 1,5 hours | |
Primary | Blood pressure | The optical signal from the wearables will be compared against the criteria measure from a blood pressure meter. | Testing of a single subject takes approximately 1,5 hours | |
Primary | Free-living energy expenditure | The algorithms developed during the laboratory testing will be compared against the criteria measure of doubly labelled water. | The subjects will be monitored during approximately 12 days (10-14 days). |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05009251 -
Using Explainable AI Risk Predictions to Nudge Influenza Vaccine Uptake
|
N/A | |
Completed |
NCT04538222 -
Workplace Physical Activity Intervention
|
||
Completed |
NCT05509270 -
Efficacy of Communication Modalities for Promoting Flu Shots
|
N/A | |
Completed |
NCT05012163 -
Lottery Incentive Nudges to Increase Influenza Vaccinations
|
N/A | |
Completed |
NCT05551546 -
Functional Medicine Health Coaching
|
N/A | |
Completed |
NCT04323137 -
Encouraging Flu Vaccination Among High-Risk Patients Identified by ML
|
N/A | |
Completed |
NCT00673413 -
The Perception of the Estomy-Individual Regarding of Its Situation
|
N/A | |
Not yet recruiting |
NCT06044545 -
Effect Web Based Pregnancy Preparation Education According to Health Promotion Model in Preconceptional Period on Women
|
N/A | |
Completed |
NCT05565963 -
Effectiveness of VR Exercise Intervention on Functional Fitness and Quality of Life Among Elderly
|
N/A | |
Completed |
NCT06332248 -
Possible Effects of the Dietary Supplement Magnesium Compared to Placebo
|
N/A | |
Completed |
NCT05509283 -
Nudging Flu Vaccination in Patients at Moderately High Risk for Flu and Flu-related Complications
|
N/A | |
Completed |
NCT04526873 -
Encouraging Annual Wellness Visits Among ACO Beneficiaries
|
N/A | |
Recruiting |
NCT04727203 -
Active and Healthy Ageing for All: a Multi-component Healthy Lifestyle Program
|
N/A | |
Withdrawn |
NCT03120767 -
Wellness Initiative at New York University
|
N/A | |
Completed |
NCT04032145 -
Characterization of Health Conditions of Visitors of the Montreal Museum of Fine Arts
|
||
Completed |
NCT03529864 -
Effects of Therapeutic Exercise on Quality of Life
|
N/A | |
Completed |
NCT04169646 -
Prevention and Intervention of Neck Pain in Swiss Office-Workers
|
N/A | |
Completed |
NCT02113371 -
Evaluation of COMmunity of Practice And Safety Support (COMPASS) for Home Care Workers
|
N/A | |
Completed |
NCT04116372 -
Increasing Physical Activity in Empty Nest and Retirement Populations: A Feasibility Trial of an Online Intervention
|
N/A | |
Completed |
NCT03906942 -
Team Science to Promote Physical Activity
|
N/A |