View clinical trials related to Graves Disease.
Filter by:Background: The use of radioactive iodine (131I) therapy as the definite cure of hyperthyroidism is widespread. According to a survey on the management of Graves' disease, thirty per cent of physicians prefer to render their patients euthyroid by antithyroid drugs (ATD) prior to 131I therapy. This strategy is presumably chosen to avoid 131I induced 'thyroid storm', which, however, is rarely encountered. Several studies have consistently shown that patients who are treated with ATD prior to 131I therapy have an increased risk of treatment failure. Mostly, patients with Graves' disease have been studied, while other studies were addressed also toxic nodular goiter. Thus, it is generally accepted that ATD have 'radioprotective' properties, although this view is almost exclusively based on retrospective data and is still under debate. Indeed, this dogma was recently challenged by two randomized trials in Graves' disease, none of which showed such an adverse effect of methimazole pretreatment. It cannot be excluded that the earlier results may have been under influence of selection bias, a source of error almost unavoidable in retrospective studies. Whether ATD is radioprotective also when used in the post 131I period has also been debated. In the early period 131I therapy following a transient rise in the thyroid hormones is seen which may give rise to discomfort in some patients. The continuous use of ATD during 131I therapy, possibly in combination with levothyroxine (BRT: block-replacement therapy), leads to more stable levels of the thyroid hormones. By resuming ATD following 131I therapy, euthyroidism can usually be maintained until the destructive effect of 131I ensues. Nevertheless, many physicians prefer not to resume ATD, probably due to reports supporting that such a strategy reduces the cure rate. Parallel to the issue of ATD pretreatment, the evidence is based on retrospective studies and the ideal set-up should be reconsidered. To underscore the importance of performing randomized trials we showed recently that resumption of methimazole seven days after 131I therapy had no influence on the final outcome. Aim:To clarify by a randomized trial whether BRT during radioiodine therapy of hyperthyroid patients influences the final outcome of this therapy, in a comparison with a regime in which methimazole as mono-therapy is discontinued 8 days before radioiodine. Patients and Methods: Consecutive patients suffering from recurrent Graves' disease (n=50) or a toxic nodular goiter (n=50) are included. All patients are rendered euthyroid by methimazole (MMI) and randomized either to stop MMI eight days before 131I or to be set on BRT. This latter medication continues until three months after 131I. Calculation of the 131I activity (max. 600 MBq) includes an assessment of the 131I half-life and the thyroid volume. Patients are followed for one year with close monitoring of the thyroid function.
Aim: In a phase II pilot study encompassing 20 patients with Graves’ disease to evaluate the effect of rituximab: 1. Biochemically as assessed by markers of disease activity ( free T4, free T3, TSH, TSH-receptor antibodies, anti-TPO)
The trials in this protocol deals with the effect of pretreatment with rhTSH on radioiodine treatment of thyroid size and function, in patients with nontoxic and toxic nodular goiter. It is an introduction of a novel principle, based on prospective, randomized double blind investigations. Attached to this, we investigate the acute effects of rhTSH on thyroid size (measured by ultrasonography), both in healthy individuals and in patients with nontoxic nodular goiter. Thus, the investigations are divided into 4 categories listed below: 1. Prospective randomized double blind study of pretreatment with 0.3 mg recombinant human TSH for the effect of radioiodine in nontoxic multinodular goiter. 2. Prospective randomized double blind study of the pretreatment with 0.3 mg recombinant human TSH for the effect of radioiodine on thyroid size and function in patients with a very large (>100 ml) nontoxic or toxic goiter. 3. Does administration of 0.9 mg recombinant human TSH affect thyroid function and volume in healthy individuals? A randomized double-blind cross-over trial. 4. Does administration of 0.3 mg recombinant human TSH affect thyroid function and volume in healthy individuals and in patients with multinodular non-toxic goiter? A randomized double-blind cross-over trial. As a final note we investigate, in a pilot-study; 5. The influence of rhTSH on thyroid radioiodine uptake in patients with hyperthyroidism treated with continuous block-replacement therapy.
OBJECTIVES: I. Evaluate the effects of 20 Gy of external-beam radiotherapy to 1 orbit vs. the untreated orbit at 3 and 6 months after therapy in patients with Graves' ophthalmopathy. II. Evaluate whether 20 Gy of external-beam radiotherapy delivered to the second orbit 6 months later in the course of the disease produces effects of equal magnitude to those observed when the first orbit was treated. III. Relate the magnitude of treatment effects to the time since onset of eye symptoms. IV. Evaluate whether characteristics of radiation retinopathy are present 3 years after orbital radiotherapy.
Participants in this study will be patients diagnosed with or suspected to have a thyroid function disorder. These conditions may include: hypothyroidism, hyperthyroidism, thyroid hormone resistance, Graves' Dermopathy, and thyroid-stimulating hormone (TSH) secreting pituitary adenomas. The main purpose of this study is to further understand the natural history, clinical presentation, and genetics of thyroid function disorders. Many of the tests performed are in the context of standard medical care that is offered to all patients with thyroid function disorders. In addition, blood and tissue samples may be taken for research and genetic studies.