View clinical trials related to Gliosarcoma.
Filter by:RATIONALE: Radiosurgery can send x-rays directly to the tumor and cause less damage to normal tissue. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioblastoma by blocking blood flow to the tumor. Drugs used in chemotherapy such as irinotecan hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiosurgery together with bevacizumab and irinotecan hydrochloride may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving radiosurgery together with bevacizumab and irinotecan hydrochloride works in treating patients with recurrent glioblastoma.
The primary objective of the study is to use 24 week survival to assess the efficacy of the combination of Gliadel followed by Avastin and irinotecan in the treatment of grade IV malignant glioma patients following surgical resection. The secondary objectives are to determine the progression-free survival following the combination of Gliadel followed by Avastin and irinotecan and to describe the toxicity of Gliadel followed by Avastin and irinotecan.
The goal of this clinical research study is to find the highest tolerable dose of sorafenib that can be given in combination with temozolomide. The safety of this combination will also be studied.
This phase I/II trial studies the side effects and best dose of temozolomide when given together with radiation therapy, carmustine, O6-benzylguanine, and patients' own stem cell (autologous) transplant in treating patients with newly diagnosed glioblastoma multiforme or gliosarcoma. Giving chemotherapy, such as temozolomide, carmustine, and O6-benzylguanine, and radiation therapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim or plerixafor, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy.
This clinical trial is using EF5 to measure the oxygen level in tumor cells of patients undergoing surgery or surgery biopsy for newly diagnosed supratentorial malignant glioma. Diagnostic procedures using the drug EF5 to measure the oxygen level in tumor cells may help in planning cancer treatment
RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase II trial is studying how well erlotinib works in treating patients with recurrent glioblastoma multiforme or gliosarcoma.
A single arm Phase 2 trial with the study drug temozolomide (temodar) for newly diagnosed glioblastoma in elderly patients (defined as greater than or equal to 70 years old). Following surgical resection, and confirmation of glioblastoma, patients will proceed to primary chemotherapy with temozolomide (temodar). Temodar is given for 42 consecutive days on and 14 days off occurring every 56 days. Procedures prior to initial study treatment (<14 Days) are: Neurological/Oncological History, Neurological Examination, Height, Weight, and Body Surface Area, Performance Status, Quality Of Life FACT-BR, Labs, MGMT tissue analysis, and Cranial CT/MRI with and without contrast. The same procedures are repeated on Day 1 of each treatment cycle with the addition of an adverse event assessment. And the off study procedures for patients are performance status, Quality Of Life FACT-BR, MGMT tissue analysis, and cranial CT/MRI with and without contrast. Patients may continue with each temodar daily dose therapy if clinical and neuroradiographical exams are stable or improving.
This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment
This randomized phase II trial is studying how well neoadjuvant and adjuvant fenretinide works compared to adjuvant fenretinide alone in treating patients who are undergoing surgical resection for recurrent glioblastoma multiforme. Chemotherapy drugs, such as fenretinide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving chemotherapy before surgery may shrink the tumor so that it can be removed. Giving chemotherapy after surgery may kill any remaining tumor cells. It is not yet known whether neoadjuvant and adjuvant fenretinide is more effective than adjuvant fenretinide alone
The objective of this study is to evaluate patients with tumors of the central nervous system (CNS) for eligibility in the National Cancer Institute s research studies. These patients will undergo a series of procedures, usually including a complete medical history and physical examination; laboratory testing of blood, CSF, urine, bone marrow, or other samples; an evaluation of tumor location and size by x-rays, CT (computed tomography) or MRI (magnetic resonance imaging) scans, or nuclear medicine scans; lumbar puncture; electrocardiogram and echocardiogram; and procedures to evaluate the function of specific organs. A bone marrow biopsy is occasionally performed. Research samples may also be collected and stored to avoid having to do a painful test more than once. Tissue specimens collected during this process may be stored and used in future studies. Patients of both genders, any age, and all racial and ethnic groups with tumors of the CNS or a history of a CNS tumor are eligible. Up to 100 people are expected to participate. The physician will discuss the results of these procedures with the patient and his or her family. On the basis of the eligibility screening and the patient s wishes, the patient may then be enrolled in a primary research protocol.