Clinical Trials Logo

Gliosarcoma clinical trials

View clinical trials related to Gliosarcoma.

Filter by:

NCT ID: NCT01753713 Completed - Adult Glioblastoma Clinical Trials

Dovitinib in Treating Patients With Recurrent or Progressive Glioblastoma

Start date: December 20, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well dovitinib works in treating patients with recurrent or progressive glioblastoma. Dovitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth

NCT ID: NCT01740258 Completed - Glioblastoma Clinical Trials

Bevacizumab Beyond Progression (BBP)

BBP
Start date: January 2013
Phase: Phase 2
Study type: Interventional

Studies which have separately studied bevacizumab for recurrent gliomas and bevacizumab for newly-diagnosed glioma have shown good results and the regimens have been well-tolerated by patients. This study seeks to investigate the use of bevacizumab with the standard therapy (radiation therapy and temozolomide) in newly diagnosed patients, followed by bevacizumab and temozolomide with the continuation of bevacizumab following progression. Two critical questions remain- the role of bevacizumab maintenance and bevacizumab at the time of progression in a patient previously treated with bevacizumab at the time of initial diagnosis.

NCT ID: NCT01730950 Completed - Adult Glioblastoma Clinical Trials

Bevacizumab With or Without Radiation Therapy in Treating Patients With Recurrent Glioblastoma

Start date: December 20, 2012
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well bevacizumab with or without radiation therapy works in treating patients with recurrent glioblastoma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry cancer-killing substances to them. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. It is not yet know whether bevacizumab is more effective with or without radiation therapy in treating patients with recurrent glioblastoma

NCT ID: NCT01648348 Completed - Adult Glioblastoma Clinical Trials

Bevacizumab With or Without Anti-Endoglin Monoclonal Antibody TRC105 in Treating Patients With Recurrent Glioblastoma Multiforme

Start date: November 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This partially randomized phase I/II trial studies the side effects and the best dose of anti-endoglin monoclonal antibody TRC105 when given together with bevacizumab and to see how well they work in treating patients with glioblastoma multiforme that has come back. Monoclonal antibodies, such as anti-endoglin monoclonal antibody TRC105 and bevacizumab, may find tumor cells and help kill them. Giving anti-endoglin monoclonal antibody TRC105 together with bevacizumab may be an effective treatment for glioblastoma multiforme.

NCT ID: NCT01614795 Completed - Rhabdomyosarcoma Clinical Trials

Cixutumumab and Temsirolimus in Treating Younger Patients With Recurrent or Refractory Sarcoma

Start date: June 18, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.

NCT ID: NCT01609790 Completed - Glioblastoma Clinical Trials

Bevacizumab With or Without Trebananib in Treating Patients With Recurrent Brain Tumors

Start date: June 4, 2012
Phase: Phase 2
Study type: Interventional

This partially randomized phase II trial with a safety run-in component studies the side effects and how well bevacizumab given with or without trebananib works in treating patients with brain tumors that have come back (recurrent). Immunotherapy with monoclonal antibodies, such as bevacizumab, may induce changes in the body's immune system and interfere with the ability of tumor cells to grow and spread. Trebananib may stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether giving bevacizumab together with trebananib is more effective than bevacizumab alone in treating brain tumors.

NCT ID: NCT01514201 Completed - Glioblastoma Clinical Trials

Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

Start date: February 1, 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and the best dose of veliparib when given together with radiation therapy and temozolomide and to see how well they work in treating younger patients newly diagnosed with diffuse pontine gliomas. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells either by killing the cells or by stopping them from dividing. Giving veliparib with radiation therapy and temozolomide may kill more tumor cells.

NCT ID: NCT01498328 Completed - Glioblastoma Clinical Trials

A Study of Rindopepimut/GM-CSF in Patients With Relapsed EGFRvIII-Positive Glioblastoma

ReACT
Start date: December 2011
Phase: Phase 2
Study type: Interventional

The purpose of this research study is to find out whether adding an experimental vaccine called rindopepimut (also known as CDX-110) to the commonly used drug bevacizumab can improve progression free survival (slowing the growth of tumors) of patients with relapsed EGFRvIII positive glioblastoma.

NCT ID: NCT01480479 Completed - Glioblastoma Clinical Trials

Phase III Study of Rindopepimut/GM-CSF in Patients With Newly Diagnosed Glioblastoma

ACT IV
Start date: November 2011
Phase: Phase 3
Study type: Interventional

This 2-arm, randomized, phase III study will investigate the efficacy and safety of the addition of rindopepimut (an experimental cancer vaccine that may act to promote anti-cancer effects in patients who have tumors that express the EGFRvIII protein) to the current standard of care (temozolomide) in patients with recently diagnosed glioblastoma, a type of brain cancer. All patients will be administered temozolomide, the standard treatment for glioblastoma. Half the patients will be randomly assigned to receive rindopepimut and half the patients will be randomly assigned to receive a control called keyhole limpet hemocyanin. Patients will be treated in a blinded fashion (neither the patient or the doctor will know which arm of the study the patient is on). Patients will be treated until disease progression or intolerance to therapy and all patients will be followed for survival.

NCT ID: NCT01454596 Completed - Glioblastoma Clinical Trials

CAR T Cell Receptor Immunotherapy Targeting EGFRvIII for Patients With Malignant Gliomas Expressing EGFRvIII

Start date: May 16, 2012
Phase: Phase 1/Phase 2
Study type: Interventional

Background: The National Cancer Institute (NCI) Surgery Branch has developed an experimental therapy for treating patients with gliomas that involves taking white blood cells from the patient, growing them in the laboratory in large numbers, genetically modifying these specific cells with a type of virus (retrovirus) to attack only the tumor cells, and then giving the cells back to the patient. This type of therapy is called gene transfer. In this protocol, we are modifying the patient's white blood cells with a retrovirus that has the gene for epidermal growth factor receptor (EGFR) vIII incorporated in the retrovirus. Objective: The purpose of this study is to determine a safe number of these cells to infuse and to see if these particular tumor-fighting cells (anti-EGFRvIII cells) are a safe and effective treatment for advanced gliomas. Eligibility: - Adults age 18-70 with malignant glioma expressing the EGFRvIII molecule. Design: Work up stage: Patients will be seen as an outpatient at the National Institutes of Health (NIH) clinical Center and undergo a history and physical examination, scans, x-rays, lab tests, and other tests as needed Leukapheresis: If the patients meet all of the requirements for the study they will undergo leukapheresis to obtain white blood cells to make the anti-EGFRvIII cells. {Leukapheresis is a common procedure, which removes only the white blood cells from the patient.} Treatment: Once their cells have grown, the patients will be admitted to the hospital for the conditioning chemotherapy, the anti-EGFRvIII cells, and aldesleukin. They will stay in the hospital for about 4 weeks for the treatment. Follow up: Patients will return to the clinic for a physical exam, review of side effects, lab tests, and scans every month for the first year, and then every 1-2 months as long as their tumors are shrinking. Follow up visits will take up to 2 days.