View clinical trials related to Gliosarcoma.
Filter by:This research is being done to study the pattern of changes in various parts of the magnetic resonance imaging (MRI) studies that patients have done to help plan their radiation therapy and to evaluate the effects of therapy. The MRI of the brain is one of the major ways a participant's doctors determine how to treat a participant's tumor and if the participant's tumor is growing or not. In this study the investigators want to learn if new sequences added to the MRI that the investigators are already getting to guide partipants' radiation treatment can be analyzed to help make better treatment decisions. MRI sequences that examine the composition and structure of the tissues in the brain in a different way will be obtained. These are called called Amide Proton Transfer (APT) and Diffusion Weighted MRI. These scans will first be performed at the time of participants' radiation plannings scan done before treatment and near the end of the course of radiation treatments. This will allow the study team to investigate if there are changes in these sequences before radiation treatment and to see if using these MRI studies will allow us to better plan radiation treatments for patients in the future. This pre-treatment scan will be done at the same time as participants' standard radiation planning MRI, but will cause the scan to take longer. Participants will also have an extra MRI during one of the last 5 days of the planned 28-33 radiation treatments that are standardly used. This additional scan will not include administration of injected contrast agents, and would occur on a day when participants are also coming in for radiation. This scan will be compared with the first scan. The investigators will determine whether these changes may predict later long term outcome of treatment for patients. Patients who enroll in this study will get all of the standard therapy they would get for their tumor whether or not they participate in this study. There is no extra or different therapy given. The investigators anticipate that the radiation treatment volumes created using APT will largely overlap with the conventional plan but will be distinct at the margins. Disease failure is more likely to occur in areas with APT abnormalities suggestive of active tumor. In patients that have failure outside the contrast enhancing area, the region of failure will be predicted by regions of increased APT activity. Current MRI sequences do not allow for prediction of regions of recurrence or progression, or distinguish between tumor, pressure, or surgical injury as the cause of FLAIR/T2 abnormalities. Disease failure is more likely to occur in areas with APT abnormalities suggestive of active tumor. In patients that have failure outside the contrast enhancing area, the region of failure will be predicted by regions of increased APT activity. Current MRI sequences do not allow for prediction of regions of recurrence or progression, or distinguish between tumor, pressure, or surgical injury as the cause of FLAIR/T2 abnormalities. Volume containing elevated APT signal may be associated with outcome (survival). In an exploratory analysis, the investigators will evaluate whether there are characteristic patterns that should be prospectively studied in a larger trial.
This phase II trial studies how well whole brain radiation therapy works with standard temozolomide chemo-radiotherapy and plerixafor in treating patients with glioblastoma (brain tumor). Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Plerixafor is a drug that may prevent recurrence of glioblastoma after radiation treatment. Giving whole brain radiation therapy with standard temozolomide chemo-radiotherapy and plerixafor may work better in treating patients with glioblastoma.
The purpose of this project is to obtain safety information in small groups of individuals, scheduled to receive escalating doses of C134, a cancer killing virus (HSV-1) that has been genetically engineered to safely replicate and kill glioma tumor cells. Safety will be assessed at each dose level before proceeding to the next dose level. A special statistical technique called the Continual Reassessment Method (CRM) will be used to determine when higher doses of virus can be administered. Other objectives of the study include characterization of the activity of C134 after inoculation into the tumor and of the local and systemic immune responses to C134. Patients will also be followed with MRI scans for potential clinical response to C134. The clinical strategy takes advantage of the virus' ability to infect and kill tumor cells while making new virus within the tumors cells; a critical enhancement of this effect is accomplished by the induction of an anti-tumor immune response; both effects are produced by the IRS-1 gene that was placed into the virus by genetic engineering. An additional important component of the research are systematic assessments of the quality of life on treated patients.
Background: A sarcoma is a rare cancer. It grows in the body's connective tissue. Sarcomas in the brain and central nervous system are especially rare. The drug Sunitinib has been approved in many countries for treating other types of rare or advanced cancers. These include kidney, pancreas, and bowel cancer. Researchers want to see if it can help people with sarcomas of the central nervous system. Objective: To study the effects of Sunitinib on gliosarcomas or sarcomas of the central nervous system. Eligibility: Adults ages 18 and older with a gliosarcoma or sarcoma of the central nervous system Design: Participants will be screened with the following tests. Some may be done as part of their regular cancer care: Medical history Medication review Physical exam Blood, heart, and pregnancy tests Cranial scans to locate and measure their tumor Participants will take Sunitinib by mouth every day for 2 weeks and then take none of the drug for 1 week. These 3 weeks equal 1 cycle. Participants will have 2 study visits in cycle 1. They will have 1 visit in all other cycles. They will answer questions about quality of life and repeat some screening tests. Participants will take their blood pressure at home weekly. They keep a diary of each dose of Sunitinib and blood pressure reading. Participants can choose to share data about their physical activity levels and quality of sleep. These participants will wear a small, portable watch-sized accelerometer device on the wrist for 6 cycles. About 1 month after their last study drug dose, participants will have a final study visit. They will have a physical exam, blood tests, and scans.
This phase I trial studies the side effects and best dose of tinostamustine (EDO-S101) given with or without radiation therapy in treating patients with newly diagnosed MGMT-unmethylated glioblastoma. Tinostamustine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth in patients with glioblastoma.
This clinical trial is to validate and demonstrate the clinical usefulness of a protocol for Magnetic Resonance Imaging (MRI) in people with high grade glioma brain tumors.
This pilot early phase I trial studies the side effects of vaccine therapy in treating patients with glioblastoma that has come back. Vaccines made from a person's white blood cells mixed with tumor proteins from another person's glioblastoma tumors may help the body build an effective immune response to kill tumor cells. Giving vaccine therapy may work better in treating patients with glioblastoma.
The goal of this protocol is to transfer autologous peripheral blood mononuclear cells (PBMCs) transduced with genes encoding a chimeric antigen receptor (CAR) that recognizes epidermal growth factor receptor variant III (EGFRvIII) tumor-specific antigen into patients with recurrent glioblastoma (GBM) following stereotactic radiosurgery (SRS). The CAR used is targeted to a tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, which is expressed on a subset of patients. Normal PBMCs derived from patients with GBM are genetically engineered with a viral vector encoding the CAR and infused directly into the patient's tumor with the aim of mediating regression of their tumors. Despite our CAR being targeted to a tumor specific antigen, given the prior toxicity using CARs that were not targeted to tumor-specific antigens, the investigators elected to begin with very low doses of cells. Enrollment on this study was suspended in April 2020 while an amendment to reduce the anticipated number of participants was under review and approved. The decision to terminate the study was made in January, 2021 to shift toward the next iteration of a related CAR T cell trial.
This is a study to determine the efficacy, safety and clinical benefit (how well the drugs works), of the pharmaceutical compositions in Nasal Spray NST-4G for the treatment of brain tumors( Recurrent Glioblastoma, Gliosarcoma,Anaplastic Gliomas, Previously Treated). All drugs target the inhibition of the growth factors and neo-angiogenesis as one the main reasons for the growth of the tumor. The purpose of the Nasal Spray NST-4G study is to determine the safety and tolerability in order to establish the best dose level to be used in future studies.
This phase II trial studies the side effects and how well pembrolizumab works in combination with standard therapy in treating patients with glioblastoma. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in the chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. Giving pembrolizumab and standard therapy comprising of temozolomide and radiation therapy may kill tumor cells.