View clinical trials related to Gliosarcoma.
Filter by:The purpose of this study is to determine how safe and how well-tolerated the experimental study drug, C134 is when re-administered into the brain where the tumor is located.
Brain tumor treatment is hampered by the blood-brain barrier (BBB). This barrier prevents drugs carried in the bloodstream from getting into the brain. If the BBB can be opened, making it temporarily more permeable, drugs may able to better reach the brain tumor. In this trial we will implant a novel device with 9 ultrasound emitters, allowing temporary and reversible opening of the BBB to maximize brain penetration of drugs that modulate the immune system. The device will be implanted after radiation is completed. Immune modulating drugs will be given every 3 weeks in conjunction with activation of the device to open the BBB. The objectives of this trial are to establish whether it is safe and feasible to administer immune modulating drugs in this manner, and identify whether the treatment is effective in treating glioblastoma.
Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.
To collect and preserve glioblastoma tissue during standard of care tumor resection surgery and blood for future molecular and genetic testing. Tissue for research will be collected from three different regions within the same tumor to study how these regions differ in their structure, DNA, and RNA and also to compare the data obtained from this testing to imaging data found in the medical record. The goal of this study is to help us better understand what the glioblastoma tumor tissue looks like and how it functions. This understanding can lead to new therapies for the treatment of glioblastoma in the future.
The goal of this clinical trial is to learn about treatment for a type of brain cancer called glioma. This clinical trial is for people with glioma who have been cancer-free for a period of time but their cancer has come back. The primary goals of this clinical trial are the following: - To determine the recommended dose of PCI-24781/Abexinostat with metronomic temozolomide - To evaluate side effects associated with using PCI-24781/Abexinostat with metronomic temozolomide
This phase II trial tests the safety and side effects of efineptakin alfa and pembrolizumab in treating patients with glioblastoma that has come back (recurrent). Efineptakin alfa is an immunotherapy drug that works by helping the immune system fight tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving efineptakin alfa and pembrolizumab may kill more tumor cells in patients with recurrent glioblastoma.
This study is the first step in testing the hypothesis that adding Photobac® Photodynamic Therapy to surgical removal of a glioblastoma or gliosarcoma will be both safe and effective. Photodynamic Therapy (PDT) combines light and a photosensitizer. PDT has been used to treat a variety of cancers with varying degrees of success. For the past thirty years Photolitec has been working to develop a treatment for glioblastoma or gliosarcoma using light and a photosensitizer. Photolitec's scientists were looking for a photosensitizer that: 1. has no significant systemic toxicity apart from some temporary skin photosensitivity, 2. crosses the blood brain barrier, 3. accumulates to a high level in glioblastoma and minimally in the brain, 4. is activated by the wavelength of light that penetrates most deeply into the brain, 5. minimizes any temporary skin photosensitivity. Preliminary testing indicates the Photolitec team has achieved these five goals. Photolitec is now able to offer a clinical trial based on the results of this work.
This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.
This phase III trial compares the effect of adding lomustine to temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. Chemotherapy drugs, such as lomustine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy photons to kill tumor cells and shrink tumors. Adding lomustine to usual treatment of temozolomide and radiation therapy may help shrink and stabilize glioblastoma.
This early phase I trial identifies the best dose, possible benefits and/or side effects of natural progesterone in treating patients with glioblastoma that has come back (recurrent). Progesterone is a type of hormone made by the body that plays a role in the menstrual cycle and pregnancy. Progesterone may help control tumor growth and spread in patients with glioblastoma.