Clinical Trials Logo

Clinical Trial Summary

Functional magnetic resonance imaging (fMRI) is a non-invasive test used to detect changes in brain activity by taking picture of changes in blood flow. The imaging helps doctors better understand how the brain works. Task based fMRI (TB fMRI) prompts patients to perform different activities (e.g. word selection in a reading task), and is routinely performed on patients in preparation for a Neurological surgery (surgery that involves the nervous system, brain and/or spinal cord). The purpose is to locate areas of the brain that control speech and movement; these images will help make decisions about patient surgeries. However, there are however gaps in knowledge specific to the language areas of the brain, especially for non-English patients and bilingual patients (those who are fluent in more than one language). This study proposes to evaluate if resting state fMRI (RS fMRI) that does not require any tasks, along with a novel way to analyze these images using "graphy theory," may provide more information. Graph theory is a new mathematical method to analyze the fMRI data. The overall goal is to determine if graph theory analysis on RS fMRI may reduce differences in health care treatment and outcomes for non-English speaking and bilingual patients. We hope that the results of this study will allow doctors to perform pre-operative fMRI in patients who do not speak English.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT03496181
Study type Observational
Source Memorial Sloan Kettering Cancer Center
Contact
Status Active, not recruiting
Phase
Start date March 30, 2018
Completion date September 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04539574 - An Investigational Scan (7T MRI) for the Imaging of Central Nervous System Tumors N/A
Enrolling by invitation NCT04461002 - Evaluation of the Correlation Between Molecular Phenotype and Radiological Signature (by PET-scanner and MRI) of Incident WHO II and III Grade Gliomas.
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Completed NCT03242824 - The Utility of 18F-DOPA-PET in the Treatment of Recurrent High-grade Glioma Phase 2
Recruiting NCT04186832 - Step Count Monitoring as a Measure of Physical Activity in Patients With Newly Diagnosed Glioma Undergoing Radiation Therapy N/A
Completed NCT00424554 - Low-dose Temozolomide for 2 Weeks on Brain Tumor Enzyme in Patients With Gliomas (P04602 AM1) (Completed) Phase 2
Recruiting NCT05968053 - Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
Not yet recruiting NCT04550663 - NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors Phase 1
Completed NCT02805179 - A Study of High-Dose Chemoradiation Using Biologically-Based Target Volume Definition in Patients With Glioblastoma Phase 2
Terminated NCT04556929 - Enhanced Detection in Glioma Excision N/A
Not yet recruiting NCT06408428 - Glioma Intraoperative MicroElectroCorticoGraphy N/A
Recruiting NCT06043232 - MMR/MSI Phenotypes in Prediction of Tumor Vaccine Benefit for Gliomas
Not yet recruiting NCT06043765 - Reducing Cognitive Impairment in Glioma With Repetitive Transcranial Magnetic Stimulation and Cognitive Strategy Training N/A
Not yet recruiting NCT05025969 - Evaluation of the Incidence of NTRK Gene Fusion in Adult Brain Tumours
Completed NCT02978261 - Study of a c-Met Inhibitor PLB1001 in Patients With PTPRZ1-MET Fusion Gene Positive Recurrent High-grade Gliomas Phase 1
Terminated NCT01502605 - Phase I Study of Orally Administered Aminolevulinic Acid for Resection of Malignant Astrocytomas Phase 1
Completed NCT01836536 - Search for a Link Between Response to Treatment and Circulating Leucocytes in High Grade Glioma Patients N/A
Completed NCT01479686 - iMRI Guided Resection in Cerebral Glioma Surgery Phase 3
Completed NCT01212731 - Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
Terminated NCT01044966 - A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma Phase 1/Phase 2