Glioma Clinical Trial
Official title:
Identification of Clinically Occult Glioma Cells and Characterization of Glioma Behavior Through Machine Learning Analysis of Advanced Imaging Technology
Verified date | July 2016 |
Source | AHS Cancer Control Alberta |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Gliomas are one of the most challenging tumors to treat, because areas of the apparently normal brain contain microscopic deposits of glioma cells; indeed, these occult cells are known to infiltrate several centimeters beyond the clinically apparent lesion visualized on standard computer tomography or magnetic resonance imaging (MR). Since it is not feasible to remove or radiate large volumes of the brain, it is important to target only the visible tumor and the infiltrated regions of the brain. However, due to the limited ability to detect occult glioma cells, clinicians currently add a uniform margin of 2 cm or more beyond the visible abnormality, and irradiate that volume. Evidence, however, suggests that glioma growth is not uniform - growth is favored in certain directions and impeded in others. This means it is important to determine, for each patient, which areas are at high risk of harboring occult cells. We propose to address this task by learning how gliomas grown, by applying Machine Learning algorithms to a database of images (obtained using various advanced imaging technologies: MRI, MRS, DTI, and MET-PET) from previous glioma patients. Advances will directly translate to improvements for patients.
Status | Active, not recruiting |
Enrollment | 113 |
Est. completion date | December 2017 |
Est. primary completion date | December 2017 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility |
Inclusion Criteria: - must have histologically proven glioma - the patient or legally authorized representative must fully understand all elements of informed consent, and sign the consent form Exclusion Criteria: - psychiatric conditions precluding informed consent - medical or psychiatric condition precluding MRI or PET studies (e.g. pacemaker, aneurysm clips, neurostimulator, cochlear implant, severe claustrophobia/anxiety, pregnancy) |
Country | Name | City | State |
---|---|---|---|
Canada | Cross Cancer Institute | Edmonton | Alberta |
Lead Sponsor | Collaborator |
---|---|
AHS Cancer Control Alberta |
Canada,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | image glioma patients with advanced imaging techniques to help us better characterize gliomas in the future | Eligible patients will be given the opportunity to undergo additional diagnostic imaging. These images will be anonymized and databased. the data will be analyzed using machine learning techniques. | Pretreatment, 1 month post treatment and 7 months post treatment | |
Primary | create an image-based database to allow machine learning analysis of all the clinically available data | Eligible patients will be given the opportunity to undergo additional diagnostic imaging. These images will be anonymized and databased. the data will be analyzed using machine learning techniques. | Pretreatment, 1 month post treatment and 7 months post treatment | |
Secondary | through machine learning analysis, develop computer algorithms to allow us to automate tumour segmentation, predict tumour behaviour and predict location of clinically occult glioma cells | Eligible patients will be given the opportunity to undergo additional diagnostic imaging. These images will be anonymized and databased. the data will be analyzed using machine learning techniques. | Pretreatment, 1 month post treatment and 7 months post treatment |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT04539574 -
An Investigational Scan (7T MRI) for the Imaging of Central Nervous System Tumors
|
N/A | |
Enrolling by invitation |
NCT04461002 -
Evaluation of the Correlation Between Molecular Phenotype and Radiological Signature (by PET-scanner and MRI) of Incident WHO II and III Grade Gliomas.
|
||
Terminated |
NCT01902771 -
Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors
|
Phase 1 | |
Completed |
NCT03242824 -
The Utility of 18F-DOPA-PET in the Treatment of Recurrent High-grade Glioma
|
Phase 2 | |
Recruiting |
NCT04186832 -
Step Count Monitoring as a Measure of Physical Activity in Patients With Newly Diagnosed Glioma Undergoing Radiation Therapy
|
N/A | |
Completed |
NCT00424554 -
Low-dose Temozolomide for 2 Weeks on Brain Tumor Enzyme in Patients With Gliomas (P04602 AM1) (Completed)
|
Phase 2 | |
Recruiting |
NCT05968053 -
Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
|
||
Not yet recruiting |
NCT04550663 -
NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors
|
Phase 1 | |
Completed |
NCT02805179 -
A Study of High-Dose Chemoradiation Using Biologically-Based Target Volume Definition in Patients With Glioblastoma
|
Phase 2 | |
Terminated |
NCT04556929 -
Enhanced Detection in Glioma Excision
|
N/A | |
Not yet recruiting |
NCT06408428 -
Glioma Intraoperative MicroElectroCorticoGraphy
|
N/A | |
Recruiting |
NCT06043232 -
MMR/MSI Phenotypes in Prediction of Tumor Vaccine Benefit for Gliomas
|
||
Not yet recruiting |
NCT06043765 -
Reducing Cognitive Impairment in Glioma With Repetitive Transcranial Magnetic Stimulation and Cognitive Strategy Training
|
N/A | |
Not yet recruiting |
NCT05025969 -
Evaluation of the Incidence of NTRK Gene Fusion in Adult Brain Tumours
|
||
Completed |
NCT02978261 -
Study of a c-Met Inhibitor PLB1001 in Patients With PTPRZ1-MET Fusion Gene Positive Recurrent High-grade Gliomas
|
Phase 1 | |
Completed |
NCT01836536 -
Search for a Link Between Response to Treatment and Circulating Leucocytes in High Grade Glioma Patients
|
N/A | |
Terminated |
NCT01502605 -
Phase I Study of Orally Administered Aminolevulinic Acid for Resection of Malignant Astrocytomas
|
Phase 1 | |
Completed |
NCT01479686 -
iMRI Guided Resection in Cerebral Glioma Surgery
|
Phase 3 | |
Completed |
NCT01212731 -
Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
|
||
Withdrawn |
NCT00985036 -
Vascular Endothelial Growth Factor (VEGF) Levels in Brain Tumor Patients
|
N/A |