Clinical Trials Logo

Clinical Trial Summary

The purpose of this research is to learn more about how what the Apple watch measures, in terms of walking data, heart rate, breathing rate, and sleep habits, relates to how participants feel. During the course of the treatment, the symptoms participants experience change, and whether the Apple watch can detect these changes. Ultimately, this knowledge is being used to design proactive tools and signatures that can predict complications or symptom changes before they happen.


Clinical Trial Description

Glioblastoma is the most common primary malignant brain tumor in adults, with a near-universal rate of recurrence, and reports low median survivals of between 14 and 18 months, even with maximal therapy. Although participants have frequent clinical and imaging follow-ups to monitor their condition, complications are difficult to anticipate and may arise suddenly. For instance, participants with glioblastoma commonly demonstrate hypercoagulability, predisposing them to venous thromboembolism (VTE) with significant morbidity and mortality. VTE is a leading cause of death among cancer participants receiving outpatient chemotherapy, and timely detection and treatment can increase survival. Wearable sensors, in the form of direct-to-consumer devices, may allow for insights to allow for timely, proactive interventions. Nearly 20 percent of US residents own a smart wearable device such as the FitBit or Apple watch. Integration of wearable devices into clinical care has accelerated due to the COVID-19 pandemic's boost in the development of telehealth services. The increasing accessibility and affordability of wearable technology have also allowed for new possibilities to deliver remote and timely care to participants. The sensors in consumer devices capture a wide range of information. Trans-dermal optical photoplethysmography provides cardiac and respiratory measurements using non-invasive blood flow data. Meanwhile, motion and spatial data are supplied by accelerometers and gyroscopes. This raw data can then be assembled to provide insight into biometric parameters ranging from step counts to higher level information (e.g. VO2 max and sleep duration). Prior work has already used this data at a higher level to link movement activity and vital signs to a patient's thrombosis risk but has not been done in the brain tumor population. This study will ask participants to wear an Apple watch and document any health events or symptoms. Patterns will be analyzed within the captured data that may be associated with symptoms. By annotating symptomatic episodes, study is aimed to generate contextualized wearable sensor datasets that do not currently exist for glioblastoma participants and develop digital biomarkers for certain symptoms. For instance, abnormal variations in heart rate or breathing rate will be observed preceding a seizure or other transient neurological symptoms. Wearable data uses the patient's baseline at the beginning of the study as a matched control. Traditional follow-up care and Karnofsky performance status (KPS) evaluation rely on snapshot measurements, patient interviews, and clinician impressions during a relatively brief clinic visit. Wearable sensors may provide higher resolution information to help determine KPS between visit assessment and interventions. Some studies have demonstrated the feasibility of using wearables for remote monitoring of KPS in advanced gastrointestinal and lung cancers, but have yet to include participants with glioblastoma. One feasibility study has explored wearables in determining sleep quality in glioblastoma participants. To understand the relationship between actigraphy data and clinical scores of well-being in participants with glioblastoma, investigators will examine the association between collected movement data and KPS. This is a feasibility study using the Apple Watch and an iOS application on the participant's iPhone to collect continuous actigraphy data and annotate symptom occurrence. Apple's open-source framework is being utilized to specifically design for medical research, ResearchKit, to build the app and securely collect data. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06129760
Study type Interventional
Source Case Comprehensive Cancer Center
Contact Andrew Dhawan, MD, DPhil
Phone 216-444-4272
Email dhawana@ccf.org
Status Recruiting
Phase N/A
Start date April 30, 2024
Completion date January 1, 2027

See also
  Status Clinical Trial Phase
Recruiting NCT05664243 - A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Recruiting NCT05635734 - Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT03679754 - Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102 Phase 1
Completed NCT01250470 - Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma Phase 1
Terminated NCT03927222 - Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma Phase 2
Recruiting NCT03897491 - PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma Phase 2
Active, not recruiting NCT03587038 - OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma Phase 1
Completed NCT01922076 - Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas Phase 1
Recruiting NCT04391062 - Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma Phase 2
Active, not recruiting NCT03661723 - Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma Phase 2
Active, not recruiting NCT02655601 - Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001 Phase 2
Completed NCT02206230 - Trial of Hypofractionated Radiation Therapy for Glioblastoma Phase 2
Completed NCT03493932 - Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade Phase 1
Terminated NCT02709889 - Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06058988 - Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer Phase 2
Completed NCT03018288 - Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM) Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Not yet recruiting NCT04552977 - A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma Phase 2
Terminated NCT02905643 - Discerning Pseudoprogression vs True Tumor Growth in GBMs