Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to test the effectiveness, safety, and tolerability of a drug called Methimazole. The investigational drug, Methimazole is not FDA approved for brain tumors, but it is used to treat thyroid illnesses. Different doses of Methimazole will be given to several study participants with glioblastoma. The first several study participants will receive the lowest dose. If the drug does not cause serious side effects, it will be given to other study participants at a higher dose. The doses will continue to increase for every group of study participants until the side effects occur that require the dose to be lowered. The procedures in this study are research blood draws, physical exams, collection of medical history, MRI scans, and study drug administration.


Clinical Trial Description

Hydrogen sulfide (H2S), a by-product of cysteine metabolism, inhibits the growth of cultured glioblastoma cells and impairs progression of glioblastoma tumors developing in vivo in laboratory mice. Additionally, endogenous H2S production and signaling via protein sulfhydration are decreased in human glioblastoma brain tissues compared to non-cancerous brain tissue. Thus, boosting H2S levels is a promising and novel therapeutic strategy for treating glioblastoma. The use of exogenous H2S is difficult to translate to the clinic due to toxicity and volatility. Therefore, bolstering endogenous H2S synthesis and signaling represents a safe and promising method to mitigate disease progression. Based on previously published data, which detailed the use of the thyroid hormone inhibitor propylthiouracil (PTU) to enhance endogenous H2S production in mice, and a previous clinical trial at CCF utilizing PTU to increase the survival of glioblastoma patients, revisiting the use of thyroid hormone inhibitors to de-repress endogenous H2S production concurrent with standards of care poses a novel therapeutic avenue. In the nearly two decades since the aforementioned clinical trial, PTU has been largely replaced in clinical endocrinology by the safer and more efficient thyroid inhibitor methimazole. Given our recent success elucidating the importance of tumor suppressive H2S in the realm of GBM, it is hypothesized that reduced thyroid hormone production via oral methimazole intake will bolster the effectiveness of frontline therapy and extend survival by boosting H2S production and function within the tumor-bearing brain. The goal of this trial is to provide proof of the concept that suppression of thyroid hormone signaling via methimazole and subsequent augmentation of H2S synthesis and signaling is feasible in patients with glioblastoma. Achievement of this goal will motivate and guide further therapeutic development of this combinatorial therapeutic approach. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05607407
Study type Interventional
Source Case Comprehensive Cancer Center
Contact David Peereboom, MD
Phone 216-445-6068
Email peerebd@ccf.org
Status Recruiting
Phase Phase 2
Start date January 30, 2023
Completion date January 2026

See also
  Status Clinical Trial Phase
Recruiting NCT05664243 - A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Recruiting NCT05635734 - Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT03679754 - Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102 Phase 1
Completed NCT01250470 - Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma Phase 1
Terminated NCT03927222 - Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma Phase 2
Recruiting NCT03897491 - PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma Phase 2
Active, not recruiting NCT03587038 - OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma Phase 1
Completed NCT01922076 - Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas Phase 1
Recruiting NCT04391062 - Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma Phase 2
Active, not recruiting NCT03661723 - Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma Phase 2
Active, not recruiting NCT02655601 - Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001 Phase 2
Completed NCT02206230 - Trial of Hypofractionated Radiation Therapy for Glioblastoma Phase 2
Completed NCT03493932 - Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade Phase 1
Terminated NCT02709889 - Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06058988 - Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer Phase 2
Completed NCT03018288 - Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM) Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Not yet recruiting NCT04552977 - A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma Phase 2
Terminated NCT02905643 - Discerning Pseudoprogression vs True Tumor Growth in GBMs