Glioblastoma Clinical Trial
Official title:
Accurate DCE-MRI Measurement of Glioblastoma Using Point-of-care Portable Perfusion Phantom
Verified date | March 2024 |
Source | University of Alabama at Birmingham |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The goal of this study is to test whether a new device developed at the University of Alabama at Birmingham (UAB) can decrease the error in calculating blood flow of a brain tumor, leading to better prognosis. UAB radiological research team has been studying a cutting-edge imaging technique named dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) , or DCE-MRI, over 10 years. This technique has been globally used to calculate blood flow of various tissues including tumors. Blood flow often serves as a critical indicator showing a disease status. For example, a brain tumor has typically high blood flow, so the magnitude of blood flow can be used as an indicator to identify the presence and aggressiveness of a brain tumor. In addition, an effective therapy can result in the alteration of the blood flow in a brain tumor. Therefore, the investigators may be able to determine whether the undergoing therapy is effective or not by measuring the blood flow in the brain tumor, and decide whether they need to continue the therapy or try a different one. However, unfortunately, the measurement of blood flow using DCE-MRI is often inaccurate. MRI scanners may use different hardware and software thus the measurement may be different across scanners. The measurement may also be different over time due to hardware instability. Therefore, the investigators propose to use an artificial tissue, named "phantom", together with a patient. The phantom has a constant blood flow thus it can serve as a standard. Errors, if it occurs, will affect the images of both the patient and the phantom. Therefore, the investigators will be able to correct the errors in the patient image using the phantom image. UAB radiological research team invented a new device for this purpose named point-of-care portable perfusion phantom, or shortly P4. The team recently demonstrated the utility of the P4 phantom for accurate measurement of blood flow in pancreatic cancer and prostate cancer. In this study, they will test whether the P4 phantom will improve the measurement accuracy in brain cancer.
Status | Active, not recruiting |
Enrollment | 12 |
Est. completion date | December 2025 |
Est. primary completion date | December 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Adult patients (age 18 years or older). 2. Patients treated with surgery, followed by chemoradiation therapy, and currently under chemotherapy. 3. Patients with a newly or enlarged enhancing lesion inside the radiation field at least three months after completion of radiation therapy. 4. Patients with signed informed consent. Exclusion Criteria: 1. Participants with safety contraindications to MRI examination (determined by standard clinical screening). 2. Participants on hemodialysis or with acute renal failure. 3. Participants who are pregnant, lactating or are planning to become pregnant during the study. 4. Participants who are planning to farther a child during the study. |
Country | Name | City | State |
---|---|---|---|
United States | University of Alabama at Birmingham | Birmingham | Alabama |
Lead Sponsor | Collaborator |
---|---|
University of Alabama at Birmingham | National Center for Advancing Translational Sciences (NCATS) |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | To measure the reproducibility of qDCE-MRI measurement of glioblastoma. | The goal is to measure the reproducibility of blood perfusion measurement in the glioblastoma using the two consecutive DCE-MRI scans with and without P4-based error correction.
The pharmacokinetic (PK) parameter within the region of interest (ROI) will be averaged at each scan after P4-based error correction, and the mean values of two scans will be compared to calculate the reproducibility coefficient (%RDC) using the equation, %RDC=2.77wCV, where wCV is the within-subject coefficient of variation. The %RDC before P4-based error correction will also be calculated for comparison. Data reproducibility will be assessed using the intra-class correlation coefficient (ICC) as well. ICC = s 2b / (s 2b+ s 2w), where sb is between-subject standard deviation and sw is within-subject standard deviation. |
At the end of Cycle 2 of chemoradiation therapy (each cycle is 28 days) | |
Primary | To determine whether the differentiation between the pseudo- and true-progressions of glioblastoma can be improved using qDCE-MRI after P4-based error correction. | The PK parameter (e.g., Ktrans) in the tumor with pseudoprogression will be statistically compared with that with true-progression before and after P4-based error correction to determine whether the differentiation between the pseudo- and true-progressions of glioblastoma can be improved using qDCE-MRI after P4-based error correction. Each tumor will be classified into pseudo- or true-progression based on RANO criteria. | At the end of Cycle 2 of chemoradiation therapy (each cycle is 28 days) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05664243 -
A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT02768389 -
Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma
|
Early Phase 1 | |
Recruiting |
NCT05635734 -
Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT03679754 -
Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102
|
Phase 1 | |
Completed |
NCT01250470 -
Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma
|
Phase 1 | |
Terminated |
NCT03927222 -
Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma
|
Phase 2 | |
Recruiting |
NCT03897491 -
PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT03587038 -
OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma
|
Phase 1 | |
Completed |
NCT01922076 -
Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas
|
Phase 1 | |
Recruiting |
NCT04391062 -
Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT03661723 -
Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT02655601 -
Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001
|
Phase 2 | |
Completed |
NCT02206230 -
Trial of Hypofractionated Radiation Therapy for Glioblastoma
|
Phase 2 | |
Completed |
NCT03493932 -
Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade
|
Phase 1 | |
Terminated |
NCT02709889 -
Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT06058988 -
Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer
|
Phase 2 | |
Completed |
NCT03018288 -
Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM)
|
Phase 2 | |
Withdrawn |
NCT03980249 -
Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells
|
Early Phase 1 | |
Not yet recruiting |
NCT04552977 -
A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma
|
Phase 2 | |
Terminated |
NCT02905643 -
Discerning Pseudoprogression vs True Tumor Growth in GBMs
|