Glioblastoma Clinical Trial
Official title:
Accurate DCE-MRI Measurement of Glioblastoma Using Point-of-care Portable Perfusion Phantom
The goal of this study is to test whether a new device developed at the University of Alabama at Birmingham (UAB) can decrease the error in calculating blood flow of a brain tumor, leading to better prognosis. UAB radiological research team has been studying a cutting-edge imaging technique named dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) , or DCE-MRI, over 10 years. This technique has been globally used to calculate blood flow of various tissues including tumors. Blood flow often serves as a critical indicator showing a disease status. For example, a brain tumor has typically high blood flow, so the magnitude of blood flow can be used as an indicator to identify the presence and aggressiveness of a brain tumor. In addition, an effective therapy can result in the alteration of the blood flow in a brain tumor. Therefore, the investigators may be able to determine whether the undergoing therapy is effective or not by measuring the blood flow in the brain tumor, and decide whether they need to continue the therapy or try a different one. However, unfortunately, the measurement of blood flow using DCE-MRI is often inaccurate. MRI scanners may use different hardware and software thus the measurement may be different across scanners. The measurement may also be different over time due to hardware instability. Therefore, the investigators propose to use an artificial tissue, named "phantom", together with a patient. The phantom has a constant blood flow thus it can serve as a standard. Errors, if it occurs, will affect the images of both the patient and the phantom. Therefore, the investigators will be able to correct the errors in the patient image using the phantom image. UAB radiological research team invented a new device for this purpose named point-of-care portable perfusion phantom, or shortly P4. The team recently demonstrated the utility of the P4 phantom for accurate measurement of blood flow in pancreatic cancer and prostate cancer. In this study, they will test whether the P4 phantom will improve the measurement accuracy in brain cancer.
Glioblastoma is the most common primary malignant type of brain tumor in adults. Surgical tumor resection followed by chemoradiation therapy is the standard of care for patients with glioblastoma, but its prognosis is still fairly dismal (median survival time = 15 months). One major concern that prevents effective treatment management is the difficulty of differentiating between pseudo-progression and true-progression. Pseudo-progression occurs in about 20-30% of glioblastoma patients typically within 3 months after chemoradiation therapy has been completed. Pseudo-progression is a local inflammatory reaction caused by irradiation and enhanced by concurrent chemotherapy, which leads to a transient increase of blood brain barrier (BBB) permeability. The BBB, however, is also disrupted by new cancer occurrence. Therefore, both pseudo- and true-progressions appear with an increased contrast enhancement in MRI, and there are currently no established techniques to differentiate between them. Pseudo-progression is typically known to be associated with better clinical outcomes, so pseudo-progression mistaken for true-progression results in the discontinuation of an effective therapy, while true-progression mistaken for pseudo-progression leads to the continuation of an ineffective therapy that may induce adverse side effects. DCE-MRI has potential to differentiate between pseudo- and true-progressions of glioblastoma. The enhancing lesions of pseudo-progression are due to inflammation, whereas those of true-progression are caused by cancer growing. Thus, true-progression typically presents higher perfusion than pseudo-progression does. DCE-MRI can quantitatively assess the tissue perfusion by monitoring the dynamic change of MRI contrast agent concentration. Several investigators have demonstrated the potential of quantitative DCE-MRI to differentiate between pseudo- and true-progressions. However, the variability in quantitative DCE-MRI measurement across different MRI scanners remains a major concern, as it hinders data comparison among institutes to retrieve a reliable threshold for accurate prognosis and subsequent treatment optimization. A point-of-care perfusion phantom may allow high reproducibility and accurate comparison of quantitative DCE-MRI data across MRI platforms. The UAB radiological research team recently developed the P4 phantom, which is small enough to be imaged concurrently with a patient for real-time quality assurance, but large enough not to suffer from the partial volume effect. The P4 phantom creates constant contrast enhancement curves with very robust repeatability, and thus the contrast agent concentration time-course in a tumor, which is a major source of error in quantitating DCE-MRI parameters, can be accurately calculated in reference to the values observed in the phantom. In our previous study, the variability in quantitating the volume transfer constant of various human tissues across two different MRI scanners was reduced fivefold after P4-based error correction. The investigators hypothesize that the variability in quantitative DCE-MRI measurement of glioblastoma across different scanners will be significantly reduced when the P4 is used for error correction, leading to better differentiation between pseudo- and true-progressions. The goal of this study is to test this hypothesis. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05664243 -
A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT02768389 -
Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma
|
Early Phase 1 | |
Recruiting |
NCT05635734 -
Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT03679754 -
Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102
|
Phase 1 | |
Completed |
NCT01250470 -
Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma
|
Phase 1 | |
Terminated |
NCT03927222 -
Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma
|
Phase 2 | |
Recruiting |
NCT03897491 -
PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT03587038 -
OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma
|
Phase 1 | |
Completed |
NCT01922076 -
Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas
|
Phase 1 | |
Recruiting |
NCT04391062 -
Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT03661723 -
Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT02655601 -
Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001
|
Phase 2 | |
Completed |
NCT02206230 -
Trial of Hypofractionated Radiation Therapy for Glioblastoma
|
Phase 2 | |
Completed |
NCT03493932 -
Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade
|
Phase 1 | |
Terminated |
NCT02709889 -
Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT06058988 -
Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer
|
Phase 2 | |
Completed |
NCT03018288 -
Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM)
|
Phase 2 | |
Withdrawn |
NCT03980249 -
Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells
|
Early Phase 1 | |
Not yet recruiting |
NCT04552977 -
A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma
|
Phase 2 | |
Terminated |
NCT02905643 -
Discerning Pseudoprogression vs True Tumor Growth in GBMs
|