Glioblastoma Multiforme Clinical Trial
Official title:
Biologic Association Between Metabolic MR-PET and Tissue Measures of Glycolysis in Brain Tumors Visualization, Quantitation, and Targeting of Infiltrating Glioblastoma Cells With pH Sensitive Amine Chemical Exchange Saturation Transfer Magnetic Resonance Imaging-KL2TR001882
The purpose of this project is to validate a new combined MRI and PET imaging technique as a biomarker or measure of glycolysis in brain tumors. To accomplish this, the investigators propose obtaining image-guided measures of tissue pH and biopsied tissue in tumor areas selected for bulk resection surgery. Investigators will then correlate the imaging measurements with pH, RNA expression, protein expression, and bioenergetics measurements of key glycolytic enzymes.
Patients who are scheduled for resection of glioblastoma multiforme (GBM) as part of standard care will be invited to take part in the study. All patients will undergo FDG-PET scan for the study using standard clinical imaging techniques, along with standard brain MRI plus up to approximately 15 minutes of investigational MR imaging sequences to permit calculation of "glycolytic index" as an experimental GBM imaging biomarker. Prior to bulk tumor resection at the patient's scheduled surgery, pH measurements, using the SoftCell pH probe, will be taken from approximately 3 anatomic sites that have been correlated with the imaging glycolytic index calculation. Following pH measurements, the patient's clinical biopsy/tumor resection will take place as planned for clinical care. Tissue samples resected during the clinical procedure will be obtained and processed using immunohistochemistry techniques for further assessments, including RNA sequencing and bioenergetics analysis. The current study will investigate the central hypothesis that biopsied tumor tissue undergoing high levels of glycolysis via RNA expression, protein expression, and bioenergetics analyses can be reliably detected, correlates with direct measure of tissue pH, and is strongly associated with a "glycolytic index" created by combining 18F-FDG PET, amine CEST-SAGE-EPI, perfusion MRI and diffusion MRI. In addition, the investigators will investigate whether metabolic differences identified from this imaging modality may identify infiltrating non-enhancing tumor cells. FDG: 18F-2-fluoro-2-deoxy-D-glucose fluorodeoxyglucose CEST: chemical exchange saturation transfer SAGE: spin and gradient echo EPI: echo planar imaging IHC: immuno-histochemical rCBF: regional cerebral blood flow rCBV: relative cerebral volume DSC: dynamic susceptibility contrast ADC: apparent diffusion coefficient MCT: Monocarboxylate transporters ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05023551 -
Study of DSP-0390 in Patients With Recurrent High-Grade Glioma
|
Early Phase 1 | |
Recruiting |
NCT04116411 -
A Clinical Trial Evaluating the Efficacy of Valganciclovir in Glioblastoma Patients
|
Phase 2 | |
Terminated |
NCT01902771 -
Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors
|
Phase 1 | |
Recruiting |
NCT03175224 -
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
|
Phase 2 | |
Completed |
NCT02386826 -
INC280 Combined With Bevacizumab in Patients With Glioblastoma Multiforme
|
Phase 1 | |
Completed |
NCT00038493 -
Temozolomide and SCH66336 for Recurrent Glioblastoma Multiforme
|
Phase 2 | |
Withdrawn |
NCT03980249 -
Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells
|
Early Phase 1 | |
Recruiting |
NCT01923922 -
CT Perfusion in the Prognostication of Cerebral High Grade Glioma
|
N/A | |
Completed |
NCT01956734 -
Virus DNX2401 and Temozolomide in Recurrent Glioblastoma
|
Phase 1 | |
Completed |
NCT01402063 -
PPX and Concurrent Radiation for Newly Diagnosed Glioblastoma Without MGMT Methylation
|
Phase 2 | |
Completed |
NCT01301430 -
Parvovirus H-1 (ParvOryx) in Patients With Progressive Primary or Recurrent Glioblastoma Multiforme.
|
Phase 1/Phase 2 | |
Suspended |
NCT01386710 -
Repeated Super-selective Intraarterial Cerebral Infusion Of Bevacizumab Plus Carboplatin For Treatment Of Relapsed/Refractory GBM And Anaplastic Astrocytoma
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT00995007 -
A Randomized Phase II Trial of Vandetanib (ZD6474) in Combination With Carboplatin Versus Carboplatin Alone Followed by Vandetanib Alone in Adults With Recurrent High-Grade Gliomas
|
Phase 2 | |
Terminated |
NCT01044966 -
A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma
|
Phase 1/Phase 2 | |
Terminated |
NCT00990496 -
A Study Using Allogenic-Cytomegalovirus (CMV) Specific Cells for Glioblastoma Multiforme (GBM)
|
Phase 1 | |
Completed |
NCT00402116 -
Phase 1/2 Study of Enzastaurin in Newly Diagnosed Glioblastoma Multiforme (GBM) and Gliosarcoma (GS) Patients
|
Phase 1/Phase 2 | |
Completed |
NCT00112502 -
Temozolomide Alone or in Combination With Thalidomide and/or Isotretinoin and/or Celecoxib in Treating Patients Who Have Undergone Radiation Therapy for Glioblastoma Multiforme
|
Phase 2 | |
Completed |
NCT00504660 -
6-TG, Capecitabine and Celecoxib Plus TMZ or CCNU for Anaplastic Glioma Patients
|
Phase 2 | |
Recruiting |
NCT05366179 -
Autologous CAR-T Cells Targeting B7-H3 in Recurrent or Refractory GBM CAR.B7-H3Tc
|
Phase 1 | |
Recruiting |
NCT04277221 -
ADCTA for Adjuvant Immunotherapy in Standard Treatment of Recurrent Glioblastoma Multiforme (GBM)
|
Phase 3 |