Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05120284
Other study ID # IRB202101509
Secondary ID FD-R-007271-01PR
Status Recruiting
Phase Phase 2
First received
Last updated
Start date July 1, 2022
Est. completion date June 2025

Study information

Verified date February 2024
Source University of Florida
Contact Peter W Stacpoole, PhD, MD
Phone 352-273-9023
Email pws@ufl.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Conduct a multicenter, open label Phase IIA trial of oral DCA in 40 surgical patients with recurrent GBM who have clinically indicated debulking surgery planned. No patients will be recruited at UF. Patients will be genotyped to establish safe dosing regimens and will be randomized to receive DCA (N=20) or no DCA (N=20) for one week prior to surgery. Deidentified blood and tumor tissue obtained at surgery will be assessed at UF for biochemical markers of DCA dynamics.


Description:

Evaluate effects of dichloroacetate (DCA) on tumor PDC phosphorylation.


Other known NCT identifiers
  • NCT05173623

Recruitment information / eligibility

Status Recruiting
Enrollment 40
Est. completion date June 2025
Est. primary completion date June 2025
Accepts healthy volunteers No
Gender All
Age group 18 Years to 80 Years
Eligibility Inclusion Criteria: - Study subjects will be male and female adults, aged 18 through 80 years, previously diagnosed with a GBM who have experienced tumor recurrence as determined by neuroimaging and some degree of symptomatology (e.g., headache, mental status change, seizure) and have clinically indicated tumor debulking surgery planned. - All subjects will have completed initial, standard- therapy with surgical debulking, followed by radiation and temozolomide (TMZ) and will, therefore, be considered treatment failures. Patients with truly unmethylated GBM do not require prior treatment with temozolomide (TMZ). - Patients will be recruited and studied at Johns Hopkins University, Johns Hopkins affiliated Sibley Memorial Hospital, and Wake Forest University. The DCA liquid formulation is on file with the FDA, is identical to that administered in our Phase I trial of brain tumor patients and can be given by mouth or feeding tube. Patients may retain whatever medications they are receiving for other conditions (e.g., hypertension, seizures), except patients requiring insulin or sulfonylurea therapy (see below). - The probability of adverse drug-drug interactions is extremely low, for the following reasons. First, DCA is the only pharmaceutical in clinical use that is metabolized by GSTZ1. Second, DCA is not known to be metabolized by any other drug metabolizing enzyme system, thus precluding competition with other agents for biotransformation. Third, the results of both open label and randomized controlled trials of orally or parenterally administered DCA in the treatment of children and/or adults have never shown evidence of adverse drug-drug interactions (34). Thus, from decades of clinical investigations of use of DCA in various acutely or chronically ill populations, there is nothing to suggest adverse drug-drug interactions should be anticipated in this trial. - Patients who are diabetic must have a screening hemoglobin A1c (Hgb A1c) level of at least 6.0. Exclusion Criteria: - Patients considered pre-terminal (life expectancy = 2 months) - Those who are pregnant will be excluded. - DCA inhibits gluconeogenesis and lowers blood glucose levels in patients with type 2 diabetes. Therefore, in subjects who are receiving either insulin or a sulfonylurea, coadministration of DCA could lead to symptomatic hypoglycemia and those patients will be excluded from the trial. - DCA is dialyzable and its clearance diminishes in patients with end stage renal failure (GFR = 30 ml/min); such patients will be excluded from participating. - DCA is metabolized by hepatic GSTZ1, so patients with severe liver insufficiency (total bilirubin > 2.0 mg/dl or ALT or AST > 3 x ULN) will be excluded. - Patients with Hgb A1c level less than 6.0 at screening

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Dichloroacetate (DCA)
Study medication DCA is a liquid formulation mixed with an artificial sweetener containing aspartame and strawberry extract (50mg/mL) Participants will be genotyped to determine GSTZ1 (glutathione S-transferase Zeta-1) haplotype status, which will stratify this group into 1 of 2 dose regimens: EGT carriers will receive 12-14 mg/kg/12hr DCA. EGT non-carriers will receive 6-7 mg/kg/12 hr.
Genetic:
Genotype
Participants will be genotyped to determine GSTZ1 haplotype status.

Locations

Country Name City State
United States Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore Maryland
United States Sibley Memorial Hospital Washington District of Columbia
United States Wake Forest University Winston-Salem North Carolina

Sponsors (2)

Lead Sponsor Collaborator
University of Florida Food and Drug Administration (FDA)

Country where clinical trial is conducted

United States, 

References & Publications (42)

Abdelmalak M, Lew A, Ramezani R, Shroads AL, Coats BS, Langaee T, Shankar MN, Neiberger RE, Subramony SH, Stacpoole PW. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab. 2013 Jun;109(2):139-43. doi: 10.1016/j.ymgme.2013.03.019. Epub 2013 Apr 6. — View Citation

Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001 Oct 1;51(2):349-53. doi: 10.1016/s0360-3016(01)01630-3. — View Citation

Calorini L, Peppicelli S, Bianchini F. Extracellular acidity as favouring factor of tumor progression and metastatic dissemination. Exp Oncol. 2012 Jul;34(2):79-84. — View Citation

DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016 May 27;2(5):e1600200. doi: 10.1126/sciadv.1600200. eCollection 2016 May. — View Citation

Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013 Sep;123(9):3685-92. doi: 10.1172/JCI69741. Epub 2013 Sep 3. — View Citation

Dunbar EM, Coats BS, Shroads AL, Langaee T, Lew A, Forder JR, Shuster JJ, Wagner DA, Stacpoole PW. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs. 2014 Jun;32(3):452-64. doi: 10.1007/s10637-013-0047-4. Epub 2013 Dec 3. — View Citation

Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009 Sep;92(3):329-33. doi: 10.1016/j.radonc.2009.06.025. Epub 2009 Jul 13. — View Citation

Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol. 2011 Aug;39(2):453-63. doi: 10.3892/ijo.2011.1055. Epub 2011 May 25. — View Citation

Goodwin ML, Jin H, Straessler K, Smith-Fry K, Zhu JF, Monument MJ, Grossmann A, Randall RL, Capecchi MR, Jones KB. Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment. Cancer Cell. 2014 Dec 8;26(6):851-862. doi: 10.1016/j.ccell.2014.10.003. Epub 2014 Nov 26. — View Citation

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006 Mar 1;107(5):2013-21. doi: 10.1182/blood-2005-05-1795. Epub 2005 Nov 8. — View Citation

Groussard C, Morel I, Chevanne M, Monnier M, Cillard J, Delamarche A. Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J Appl Physiol (1985). 2000 Jul;89(1):169-75. doi: 10.1152/jappl.2000.89.1.169. — View Citation

Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C. Intermediates of Metabolism: From Bystanders to Signalling Molecules. Trends Biochem Sci. 2016 May;41(5):460-471. doi: 10.1016/j.tibs.2016.02.003. Epub 2016 Feb 28. — View Citation

Han Z, Berendzen K, Zhong L, Surolia I, Chouthai N, Zhao W, Maina N, Srivastava A, Stacpoole PW. A combined therapeutic approach for pyruvate dehydrogenase deficiency using self-complementary adeno-associated virus serotype-specific vectors and dichloroacetate. Mol Genet Metab. 2008 Apr;93(4):381-7. doi: 10.1016/j.ymgme.2007.10.131. Epub 2008 Feb 21. — View Citation

Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key player in cancer. Cancer Res. 2011 Nov 15;71(22):6921-5. doi: 10.1158/0008-5472.CAN-11-1457. — View Citation

Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A Metabolic Driver in the Tumour Landscape. Trends Biochem Sci. 2019 Feb;44(2):153-166. doi: 10.1016/j.tibs.2018.10.011. Epub 2018 Nov 22. — View Citation

James MO, Jahn SC, Zhong G, Smeltz MG, Hu Z, Stacpoole PW. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol Ther. 2017 Feb;170:166-180. doi: 10.1016/j.pharmthera.2016.10.018. Epub 2016 Oct 19. — View Citation

Kahlon AS, Alexander M, Kahlon A, Wright J. Lactate levels with glioblastoma multiforme. Proc (Bayl Univ Med Cent). 2016 Jul;29(3):313-4. doi: 10.1080/08998280.2016.11929449. — View Citation

Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, Lu J. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol. 2012 May;32(10):1893-907. doi: 10.1128/MCB.06248-11. Epub 2012 Mar 19. — View Citation

Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta. 2014 Dec;1846(2):617-29. doi: 10.1016/j.bbcan.2014.08.005. Epub 2014 Aug 23. — View Citation

Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, van der Burg SH, Verdegaal EM, Cascante M, Shlomi T, Gottlieb E, Peeper DS. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013 Jun 6;498(7452):109-12. doi: 10.1038/nature12154. Epub 2013 May 19. — View Citation

Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano M, Stacpoole PW, DiMauro S, De Vivo DC. Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology. 2006 Feb 14;66(3):324-30. doi: 10.1212/01.wnl.0000196641.05913.27. — View Citation

Li J, Kato M, Chuang DT. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J Biol Chem. 2009 Dec 4;284(49):34458-67. doi: 10.1074/jbc.M109.065557. Epub 2009 Oct 15. — View Citation

Park I, Larson PE, Zierhut ML, Hu S, Bok R, Ozawa T, Kurhanewicz J, Vigneron DB, Vandenberg SR, James CD, Nelson SJ. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol. 2010 Feb;12(2):133-44. doi: 10.1093/neuonc/nop043. Epub 2010 Jan 25. — View Citation

Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, Edwards RA, Gratton E, Waterman ML. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 2014 Jul 1;33(13):1454-73. doi: 10.15252/embj.201488598. Epub 2014 May 13. — View Citation

Patel MS, Korotchkina LG, Sidhu S. Interaction of E1 and E3 components with the core proteins of the human pyruvate dehydrogenase complex. J Mol Catal B Enzym. 2009 Nov 1;61(1-2):2-6. doi: 10.1016/j.molcatb.2009.05.001. — View Citation

Rubinstein LV, Steinberg SM, Kummar S, Kinders R, Parchment RE, Murgo AJ, Tomaszewski JE, Doroshow JH. The statistics of phase 0 trials. Stat Med. 2010 May 10;29(10):1072-6. doi: 10.1002/sim.3840. — View Citation

Saraswathy S, Crawford FW, Lamborn KR, Pirzkall A, Chang S, Cha S, Nelson SJ. Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol. 2009 Jan;91(1):69-81. doi: 10.1007/s11060-008-9685-3. Epub 2008 Sep 23. — View Citation

Sattler UG, Mueller-Klieser W. The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol. 2009 Nov;85(11):963-71. doi: 10.3109/09553000903258889. — View Citation

Schwartz L, Seyfried T, Alfarouk KO, Da Veiga Moreira J, Fais S. Out of Warburg effect: An effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin Cancer Biol. 2017 Apr;43:134-138. doi: 10.1016/j.semcancer.2017.01.005. Epub 2017 Jan 22. — View Citation

Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011 Aug 11;365(6):537-47. doi: 10.1056/NEJMra1011165. No abstract available. Erratum In: N Engl J Med. 2011 Sep 8;365(10):968. — View Citation

Shroads AL, Guo X, Dixit V, Liu HP, James MO, Stacpoole PW. Age-dependent kinetics and metabolism of dichloroacetate: possible relevance to toxicity. J Pharmacol Exp Ther. 2008 Mar;324(3):1163-71. doi: 10.1124/jpet.107.134593. Epub 2007 Dec 20. — View Citation

Shroads AL, Langaee T, Coats BS, Kurtz TL, Bullock JR, Weithorn D, Gong Y, Wagner DA, Ostrov DA, Johnson JA, Stacpoole PW. Human polymorphisms in the glutathione transferase zeta 1/maleylacetoacetate isomerase gene influence the toxicokinetics of dichloroacetate. J Clin Pharmacol. 2012 Jun;52(6):837-49. doi: 10.1177/0091270011405664. Epub 2011 Jun 3. — View Citation

Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008 Dec;118(12):3930-42. doi: 10.1172/JCI36843. Epub 2008 Nov 20. — View Citation

Stacpoole PW. The dichloroacetate dilemma: environmental hazard versus therapeutic goldmine--both or neither? Environ Health Perspect. 2011 Feb;119(2):155-8. doi: 10.1289/ehp.1002554. Epub 2010 Oct 4. — View Citation

Stacpoole PW. The pyruvate dehydrogenase complex as a therapeutic target for age-related diseases. Aging Cell. 2012 Jun;11(3):371-7. doi: 10.1111/j.1474-9726.2012.00805.x. Epub 2012 Apr 4. — View Citation

Stacpoole PW. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst. 2017 Nov 1;109(11). doi: 10.1093/jnci/djx071. — View Citation

Vallee A, Guillevin R, Vallee JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/beta-catenin pathway in gliomas. Rev Neurosci. 2018 Jan 26;29(1):71-91. doi: 10.1515/revneuro-2017-0032. — View Citation

Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011 Apr 1;71(7):2550-60. doi: 10.1158/0008-5472.CAN-10-2828. Epub 2011 Feb 7. — View Citation

Velpula KK, Guda MR, Sahu K, Tuszynski J, Asuthkar S, Bach SE, Lathia JD, Tsung AJ. Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget. 2017 May 30;8(22):35639-35655. doi: 10.18632/oncotarget.16767. — View Citation

Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016 Jul 28;166(3):555-566. doi: 10.1016/j.cell.2016.07.002. — View Citation

Walenta S, Schroeder T, Mueller-Klieser W. Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem. 2004 Aug;11(16):2195-204. doi: 10.2174/0929867043364711. — View Citation

Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000 Feb 15;60(4):916-21. — View Citation

* Note: There are 42 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Level of phosphorylated PDC protein expressed in surgical tissue The efficacy of dichloroacetate will be determined by the level of phosphorylated PDC protein expressed in surgical tissue. Within 4 weeks post surgery
See also
  Status Clinical Trial Phase
Recruiting NCT05023551 - Study of DSP-0390 in Patients With Recurrent High-Grade Glioma Early Phase 1
Recruiting NCT06059690 - Biologic Association Between Metabolic Magnetic Resonance-positron Emission Tomograph (MR-PET) and Tissue Measures of Glycolysis in Brain Tumors of Infiltrating Glioblastoma Cells Phase 1/Phase 2
Recruiting NCT04116411 - A Clinical Trial Evaluating the Efficacy of Valganciclovir in Glioblastoma Patients Phase 2
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Recruiting NCT03175224 - APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors Phase 2
Completed NCT02386826 - INC280 Combined With Bevacizumab in Patients With Glioblastoma Multiforme Phase 1
Completed NCT00038493 - Temozolomide and SCH66336 for Recurrent Glioblastoma Multiforme Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Recruiting NCT01923922 - CT Perfusion in the Prognostication of Cerebral High Grade Glioma N/A
Completed NCT01956734 - Virus DNX2401 and Temozolomide in Recurrent Glioblastoma Phase 1
Completed NCT01301430 - Parvovirus H-1 (ParvOryx) in Patients With Progressive Primary or Recurrent Glioblastoma Multiforme. Phase 1/Phase 2
Suspended NCT01386710 - Repeated Super-selective Intraarterial Cerebral Infusion Of Bevacizumab Plus Carboplatin For Treatment Of Relapsed/Refractory GBM And Anaplastic Astrocytoma Phase 1/Phase 2
Completed NCT01402063 - PPX and Concurrent Radiation for Newly Diagnosed Glioblastoma Without MGMT Methylation Phase 2
Active, not recruiting NCT00995007 - A Randomized Phase II Trial of Vandetanib (ZD6474) in Combination With Carboplatin Versus Carboplatin Alone Followed by Vandetanib Alone in Adults With Recurrent High-Grade Gliomas Phase 2
Terminated NCT01044966 - A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma Phase 1/Phase 2
Terminated NCT00990496 - A Study Using Allogenic-Cytomegalovirus (CMV) Specific Cells for Glioblastoma Multiforme (GBM) Phase 1
Completed NCT00402116 - Phase 1/2 Study of Enzastaurin in Newly Diagnosed Glioblastoma Multiforme (GBM) and Gliosarcoma (GS) Patients Phase 1/Phase 2
Completed NCT00112502 - Temozolomide Alone or in Combination With Thalidomide and/or Isotretinoin and/or Celecoxib in Treating Patients Who Have Undergone Radiation Therapy for Glioblastoma Multiforme Phase 2
Completed NCT00504660 - 6-TG, Capecitabine and Celecoxib Plus TMZ or CCNU for Anaplastic Glioma Patients Phase 2
Recruiting NCT05366179 - Autologous CAR-T Cells Targeting B7-H3 in Recurrent or Refractory GBM CAR.B7-H3Tc Phase 1