View clinical trials related to Glioblastoma Multiforme.
Filter by:This is an adaptive design, randomized controlled, Phase 3 clinical trial in patients with glioblastoma multiforme (GBM) or gliosarcoma (GS), previously treated with surgery (if appropriate), standard of care chemo-radiation with temozolomide, +/- adjuvant temozolomide, and bevacizumab and now has progressive disease during or after bevacizumab. A total of up to 180 eligible patients with recurrent/progressive GBM or GS will be randomized to receive either the investigational drug (VAL-083) or "Investigator's choice of salvage therapy" as a contemporaneous control, in a 2:1 fashion. Up to 120 eligible patients will be randomized to receive VAL-083 at 40 mg/m2 IV on days 1, 2, and 3 of a 21-day treatment-cycle, for up to 12, 21-day treatment cycles or until they fulfill one of the criteria for study discontinuation. Up to 60 patients will be randomized to receive "Investigator's choice of salvage therapy", limited to temozolomide, lomustine, or carboplatin, until they fulfill one of the criteria for study discontinuation. The dose level for Investigator's choice salvage therapy (temozolomide, lomustine, or carboplatin), will be in accordance with the product label or institutional guidelines. In both study arms, interval medical histories, targeted physical exams, neurologic evaluations, complete blood counts, and other laboratory and safety assessments will be performed approximately every 21-days while receiving treatment. Tumor assessments are to be performed approximately every 42 ± 7 days while remaining on study. The study is estimated to last approximately 20 months.
New treatments are greatly needed for patients with recurrent glioblastoma. Metronomic temozolomide is a standard treatment option but has, at best, modest activity. The nanoliposomal irinotecan may be much more active than the parent compound irinotecan since nanoliposomal irinotecan's ability to cross the blood brain barrier is improved. This phase I study will establish the MTD of the combination of nanoliposomal irinotecan in combination with temozolomide safety and preliminary clinical efficacy of the combination of nanoliposomal irinotecan and metronomic temozolomide.
This pilot will study the feasibility and exploratory efficacy of using Cabozantinib for recurrent or refractory central nervous system tumors for which there are no curative options. Patients will also be followed for safety, time to progression, event free survival and overall survival
Newly diagnosed glioblastoma (GBM) patients with complete or partial surgical resection who were CMV seropositive patients were eligible to enroll on this trial. Patients were enrolled following standard of care chemoradiation and prior to initiation of post-radiation cycles of temozolomide (TMZ) provided they met all eligibility criteria. All eligible patients received a tetanus-diphtheria (Td) vaccination. Patients enrolled on study were randomized to receive either standard TMZ or dose-intensified TMZ (excluding the safety cohort who only received standard TMZ). All patients received a pre-conditioning injection of tetanus on day 22 of the first post-radiation cycle of TMZ. The following day, patients received the first of 3 intradermal (i.d.) injections of the study drug cytomegalovirus peptide (PEP-CMV), which contained either a combination of Component A and Component B or Component A only depending upon when they enrolled on study. Vaccines #2 and #3 will be given at 2 week intervals. Patients who were O[6]-methylguanine-DNA methyltransferase (MGMT) unmethylated received one adjuvant cycle of the TMZ regimen according to their assigned TMZ arm. Patients who were MGMT methylated or whose methylation status was inconclusive continue with up to 12 cycles of TMZ. After the completion of a patient's last TMZ cycle, vaccines continued every 4-6 weeks for a maximum number of 20 vaccines (unless tumor progression occurred). The study ended prematurely due to lack of funds. The preliminary results suggest that the vaccine may be capable of generating an immune response.
PQR309 is an oral, dual pan-PI3K (phosphatidylinositol 3-kinase phosphoinositide 3-kinase) and mTOR (mammilian target of rapamycin) inhibitor that penetrates the blood-brain barrier at pharmacodynamically active concentrations. This study plans to evaluate PQR309 in treatment of patients with first progression of glioblastoma.
The primary aim of this project is to Compare new msCS and standard DSC-PWI methods in GBM patients undergoing post-operative MRI for monitoring of tumor progression.
The purpose of this study is to determine whether Heat Shock Protein Peptide Complex-96 (HSPPC-96) Vaccine is an feasible and safe treatment for pediatric patients with newly-diagnosed High-Grade Gliomas or recurrent, resectable High-Grade Gliomas and Ependymomas.
Glioblastoma multiforme (GBM) is the most common and deadliest primary malignant neoplasm of the central nervous system in adults. Despite an aggressive multimodality treatment approach including surgery, radiation therapy and chemotherapy, overall survival remains poor. Novocure has shown that when properly tuned, very low intensity, intermediate frequency electric fields (TTFields) stunt the growth of tumor cells. The Optune system (NovoTTFTM Therapy) is a portable battery operated device, which produces TTFields within the human body by means of surface transducer arrays. The TTFields are applied to the patient by means of surface transducer arrays that are electrically insulated, so that resistively coupled electric currents are not delivered to the patient. Optune is currently FDA-approved as a single modality treatment for recurrent GBM when both surgical and radiotherapy options have been exhausted as well as combination with adjuvant temozolomide for newly diagnosed GBM. This research study is being performed to determine whether or not TTFields combined with pulsed bevacizumab treatment increases overall survival in patients with bevacizumab-refractory GBM compared to historical controls treated with continuous bevacizumab alone or in combination with other chemotherapy.
The early clinical development paradigm for chemotherapeutic agents has significantly influenced the development of therapeutic cancer vaccines. However, there are major differences between these two classes of therapeutics that have important implications for early clinical development. Specifically, the phase 1 concept of dose escalation to find a maximum-tolerated dose does not apply to most therapeutic cancer vaccines. Most therapeutic cancer vaccines are associated with minimal toxicity at a range that is feasible to manufacture or administer, and there is little reason to believe that the maximum-tolerated dose is the most effective dose. In a recent article from the biostatistics literature, Simon et al. write that "the initial clinical trial of many new vaccines will not be a toxicity or dose-ranging trial but rather will involve administration of a fixed dose of vaccine … in most cases the dose selected will be based on preclinical findings or practical considerations. Using several dose levels in the initial study to find the minimal active dose or to characterize the dose-activity relationship is generally not realistic". Consistent with these recommendations, the general philosophy of the phase 1 clinical trial is to facilitate a prompt preliminary evaluation of the safety and immunogenicity of the personalized synthetic long peptide vaccine strategy. The proposed clinical trial will test a fixed dose of vaccine. There is considerable experience with the synthetic long peptide vaccine platform. The synthetic long peptide vaccine platform has an excellent safety profile, and the optimal dose appears to be based on practical considerations (solubility of the peptide). The dose to be tested in the proposed clinical trial is consistent with other similar cancer vaccine trials that have been recently completed or are currently ongoing. The sample size (n=10) will provide a reasonably reliable estimate of the safety and immunogenicity of the vaccine.
This is a multicenter, randomized, open-label phase 2/3 study of Toca 511 and Toca FC versus standard of care that comprises Investigator's choice of single agent chemotherapy (lomustine or temozolomide) or bevacizumab administered to subjects undergoing resection for first or second recurrence (including this recurrence) of GBM or AA. Subjects meeting all of the inclusion and none of the exclusion criteria will be randomized prior to surgery in a 1:1 ratio to receive either Toca 511 and Toca FC (Experimental arm, Arm T) or control treatment with one option of standard of care (Arm SOC). Stratification will be done by IDH1 mutation status. A second stratification factor is based on the patient's Karnofsky Performance Score (KPS) (70-80 vs 90-100). Further, to account for potential differences in treatment choices for the control arm in regions, the trial will be stratified by geographical region during the randomization process. Funding Source - FDA OOPD