View clinical trials related to Glioblastoma Multiforme.
Filter by:To learn how altered metabolism in GBM causes tumor growth and resistance to drug therapy. In this pilot research study, we will dose GBM patients with a form of nicotinamide (a natural vitamin) that we can track. The nicotinamide will be converted to methyl nicotinamide (MeNAM) in the tumor. We will measure how fast the nicotinamide is converted to methyl nicotinamide. We believe that the speed of this chemical reaction in the tumor (fast versus slow) may be correlated with GBM aggressiveness
Patients diagnosed with glioblastoma (GBM) are faced with limited treatment options. This pilot study will evaluate the safety and feasibility of combining an investigational drug called 5-ALA with neuronavigation-guided low-intensity focused ultrasound (LIFU) for patients who have recurrent GBM. Focused ultrasound (FUS) can be used to non-invasively destroy tumor tissue while preserving normal tissue. When FUS is combined with 5-ALA, this combinatorial approach is called sonodynamic therapy (SDT), and this investigational therapy is being tested for its ability to cause damage to GBM cells. SDT will take place prior to surgery for recurrent GBM.
Diffuse gliomas are common tumors involving the brain. They are usually treated by surgery followed by radiation and chemotherapy. Radiotherapy is used for the treatment of brain tumors which causes damage to the tumor cells. However, radiotherapy can also affect the surrounding healthy cells in the brain, causing inflammation and swelling in the region, which is known as radio necrosis (RN). This is considered a late side effect of radiation and is seen in 10-25% of patients treated with radiation for brain tumors. Sometimes, radionecrosis can be detected on routine imaging during follow-up without new symptoms (asymptomaticRN). At the same time, in some patients, it can give rise to new symptoms like headaches, weakness, seizures,etc (symptomatic RN). The standard treatment of RN includes steroid medicines called dexamethasone, which is helpful in a proportion of patients. This is a prospective phase 2 study. This study is being conducted to investigate the ability of the drug Chlorophyllin in the treatment of radionecrosis. Chlorophyllin is a water-soluble compound obtained from the green plant pigment called chlorophyll. It has been shown to have anti-cancer, anti-bacterial, anti-viral, anti-inflammatory, and antioxidant properties. It is also used as an oral formulation and is an over-the-counter drug in various countries, and also as a food colouring agent. This is the first time chlorophyllin will be used in the setting of brain radionecrosis. Our primary aim of the study is to assess whether CHL will improve the clinical-radiological response rates. This study will be conducted on a population of 118 patients for a duration of 3 months. The total study duration is 2 years. The study is funded by Bhabha Atomic Research Centre (BARC).
The goal of this interventional study is to evaluate the efficacy of APG-157 in combination with Bevacizumab in subjects with recurrent high-grade glioma. The main questions the study aims to answer are: - Progression-free and overall survival of patients receiving this combination; - Quality of Life (QOL); and - Tumor response on imaging The participants will take APG-157 daily by dissolving two pastilles in their mouth at around breakfast, lunch and dinner time (total of six pastilles per day). The pastilles dissolve in the mouth. The participants will continue to receive Bevacizumab as standard of care.
This single center, single arm, open-label, phase I study will assess the safety of laparoscopically harvested autologous omentum, implanted into the resection cavity of recurrent glioblastoma multiforme (GBM) patients.
The purpose of the study is to test the safety and dosing of [177Lu]Lu-FF58, a radioligand therapy for patients with advanced or metastatic tumors that express proteins known as integrins: alpha-v beta-3 integrin (αvβ3) and alpha-v beta-5 integrin (αvβ5). The study will also further characterize the radioligand imaging agent [68Ga]Ga-FF58 including its ability to identify tumor lesions and its safety profile.
This study assesses the safety and efficacy of repeat monthly dosing of super-selective intra-arterial cerebral infusion (SIACI) of cetuximab and bevacizumab in patients < 22 years of age.
This single center, single arm, open-label, phase 2 study will assess the safety and efficacy of a pedicled temporoparietal fascial (TPF) or pericranial flap into the resection cavity of newly diagnosed glioblastoma multifome (GBM) patients. The objective of the Phase 2 study is to demonstrate that this surgical technique is safe and effective in a human cohort of patients with resected newly diagnosed AA or GBM and may improve progression-free survival (PFS) and overall survival (OS).
The purpose of this study is to establish the recommended phase 2 dose of eflornithine in combination with temozolomide in patients whose glioblastoma is newly diagnosed, and to evaluate safety and tolerability of this combination at that dose.
This study is investigating the use of a computer algorithm to analyze scans of the brain before surgery to predict how a person's tumor will respond to treatment.