Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03084224
Other study ID # CGM-01
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date December 1, 2019
Est. completion date December 2025

Study information

Verified date April 2022
Source Neuromed IRCCS
Contact Stefano Gambardella, PhD
Phone 0039-0865-02660
Email stefano.gambardela@neuromed.it
Is FDA regulated No
Health authority
Study type Observational [Patient Registry]

Clinical Trial Summary

For some neurological and neurodegenerative diseases genetic inheritance is well documented (described as Mendelian or multifactorial), but sometimes specific mutations or family segregation evidences have not been identified. Considering this scenario, most of the times it is impossible or unlikely to identify the responsible gene, or the private mutation, of a patient affected by a neurodegenerative disease. New technologies such as Next Generation Sequencing (NGS), allow the analysis of hundreds of genes in a single experiment. The implementation of these technologies will help to identify new genes and new variants associated with neurological diseases. Using this approach, several molecular genetic diagnosis will definitely find the needle in a haystack, and will be able to be used in the clinical practice.


Description:

1. INTRODUCTION For some neurological and neurodegenerative diseases genetic inheritance is well documented, and guidelins have been improved to ensure a quality diagnostic approach. Unfortunately, this scenario is not reproducible for most of the neurological and neurodegenerative disorders, also when a strong genetic component is documented. This is due to: - Polygenicity, where different genes can contribute to the same phenotype (eg Spastic Paraplegia, associated with over 50 genes) - Multifactorial diseases, genetic can explains only a part of the etiology of the disease (such as Parkinson's disease in which the identified genes are responsible for only 15% of patients with a clinical diagnosis) - Disorders with well established genetic component, but the responsible genes has not been identified. Therefore, sometimes it impossible or unlikely to complete a molecular diagnosis for patients with a classical or complex phenotypes New technologies such as Next Generation Sequencing (NGS), allow the analysis of hundreds of genes in a single experiment. The implementation of these technologies will help to identify new genes and new variants associate 2. DESIGN STUDY The goal of this study is to improve the diagnostic approach in molecular genetics through NGS. This will allow to characterize genomic variations and new genes responsible for neurological and neurodegenerative diseases. In particular, NGS will identify: 1. New genes associated with diseases characterized by genetic heterogeneity, Mendelian and polygenic heredity. 2. New variations responsible for disease or that can increase genetic susceptibility. 3. EXPERIMENTAL PHASE (Attachment 1) 1. Neurology and, if required, Genetic Counseling. 2. Genetic Counseling identifies the molecular analysis for a specific patient. A blood sample of 6 milliliters will be collected after informed consent (informed consent Neuromed version 2.12.2015). 3. Specific guidelines for each test will be followed for the first diagnostic approach. Molecular analyses are carried out at the Institute of Molecular Genetics Center IRCCS INM Neuromed using Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA) and microsatellites. 4. If the specific analysis will not detect the mutations, NGS panel consisting in 4,813 genes associated with known clinical phenotypes (clinical exome, or Mendeliome) will be applied. 4. MATERIALS AND METHODS - DNA/RNA EXTRACTION Genomic DNA will be isolated from peripheral blood leukocytes according to standard procedures. Total RNA will be isolated from cultured cells using TRIzol Reagent (Invitrogen, Life Technologies) according to the manufacturer's instructions. The concentration and purity of DNA/RNA samples will be determinate using Nanodrop 2000 (Thermo Scientific, Life Technologies). - MLPA (Multiplex ligation-dependent probe amplification) MLPA (Multiplex Ligation-dependent Probe Amplification) is a multiplex PCR method detecting abnormal copy numbers of up to 50 different genomic DNA or RNA sequences, which is able to distinguish sequences differing in only one nucleotide. Typical for MLPA is that it is not target sequences that are amplified, but MLPA probes that hybridise to the target sequence. In contrast to a standard multiplex PCR, a single pair PCR primers is used for MLPA amplification. The resulting amplification products of a SALSA MLPA kits range between 130 and 480 nt in length and can be analysed by capillary electrophoresis. Comparing the peak pattern obtained to that of reference samples indicates which sequences show aberrant copy numbers. The MLPA reaction can be divided in five major steps: 1) DNA denaturation and hybridisation of MLPA probes; 2) ligation reaction; 3) PCR reaction; 4) separation of amplification products by electrophoresis; and 5) data analysis • SEQUENCING The DNA sample to be sequenced is combined in a tube with primer, DNA polymerase, and DNA nucleotides (dATP, dTTP, dGTP, and dCTP). The four dye-labeled, chain-terminating dideoxy nucleotides are added as well, but in much smaller amounts than the ordinary nucleotides. The mixture is first heated to denature the template DNA (separate the strands), then cooled so that the primer can bind to the single-stranded template. Once the primer has bound, the temperature is raised again, allowing DNA polymerase to synthesize new DNA starting from the primer. DNA polymerase will continue adding nucleotides to the chain until it happens to add a dideoxy nucleotide instead of a normal one. At that point, no further nucleotides can be added, so the strand will end with the dideoxy nucleotide. This process is repeated in a number of cycles. By the time the cycling is complete, it's virtually guaranteed that a dideoxy nucleotide will have been incorporated at every single position of the target DNA in at least one reaction. That is, the tube will contain fragments of different lengths, ending at each of the nucleotide positions in the original DNA (see figure below). The ends of the fragments will be labeled with dyes that indicate their final nucleotide. After the reaction is done, the fragments are run through a long, thin tube containing a gel matrix in a process called capillary gel electrophoresis. Short fragments move quickly through the pores of the gel, while long fragments move more slowly. As each fragment crosses the "finish line" at the end of the tube, it's illuminated by a laser, allowing the attached dye to be detected. The smallest fragment (ending just one nucleotide after the primer) crosses the finish line first, followed by the next-smallest fragment (ending two nucleotides after the primer), and so forth. Thus, from the colors of dyes registered one after another on the detector, the sequence of the original piece of DNA can be built up one nucleotide at a time. The data recorded by the detector consist of a series of peaks in fluorescence intensity, as shown in the chromatogram above. The DNA sequence is read from the peaks in the chromatogram. • MICROSATELLITE Microsatellite analysis includes PCR amplification of the microsatellite loci using fluorescently labeled primers (6-FAM, TET, HEX, NED); labeled PCR products are then analyzed by capillary electrophoresis (ABI PRISM 310 and 3130 XL Applied Biosystem) (CE) or electrophoresis to separate the alleles by size. The results were processed using the GENESCAN and GENOTYPER5 programs. Once established the values of individual alleles, they were assigned to each individual. • NEXT GENERATION SEQUENCING (NGS) In principle, the concept behind NGS technology is similar to CE sequencing-DNA polymerase catalyzes the incorporation of fluorescently labeled deoxyribonucleotide triphosphates (dNTPs) into a DNA template strand during sequential cycles of DNA synthesis. During each cycle, at the point of incorporation, the nucleotides are identified by fluorophore excitation. The critical difference is that, instead of sequencing a single DNA fragment, NGS extends this process across millions of fragments in a massively parallel fashion. Illumina sequencing by synthesis (SBS) chemistry is the most widely adopted chemistry in the industry and delivers the highest accuracy, the highest yield of error-free reads, and the highest percentage of base calls above Q30.6-8 The Illumina NGS workflows include 4 basic steps (Figure 3): o Library Preparation-The sequencing library is prepared by random fragmentation of the DNA or cDNA sample, followed by 5' and 3' adapter ligation. Alternatively, "tagmentation" combines the fragmentation and ligation reactions into a single step that greatly increases the efficiency of the library preparation process.9 Adapter-ligated fragments are then PCR amplified and gel purified. o Cluster Generation-For cluster generation, the library is loaded into a flow cell where fragments are captured on a lawn of surface-bound oligos complementary to the library adapters. Each fragment is then amplified into distinct, clonal clusters through bridge amplification. When cluster generation is complete, the templates are ready for sequencing. o Sequencing-Illumina technology utilizes a proprietary reversible terminator-based method that detects single bases as they are incorporated into DNA template strands. As all 4 reversible terminator-bound dNTPs are present during each sequencing cycle, natural competition minimizes incorporation bias and greatly reduces raw error rates compared to other technologies.6, 7 The result is highly accurate base-by-base sequencing that virtually eliminates sequence-context-specific errors, even within repetitive sequence regions and homopolymers. o Data Analysis-During data analysis and alignment, the newly identified sequence reads are then aligned to a reference genome. Following alignment, many variations of analysis are possible such as single nucleotide polymorphism (SNP) or insertion-deletion (indel) identification, read counting for RNA methods, phylogenetic or metagenomic analysis, and more. 5. STATISTICS In order to determine the pathogenicity of the variants, we will be performed: - Molecular test in proband's family. - In-silico analysis by bioinformatics software (Sift: http://sift.jcvi.org/; PolyPhen: http://genetics.bwh.harvard.edu/pph2/). - Frequency analysis in the general population with SNPs Banks (dbSNP: https: //www.ncbi.nlm.nih.gov/projects/SNP/; EXAC: http://exac.broadinstitute.org/) 6. ETHICAL ASPECTS This study follow the ethical standards of Helsinki Declaration and its revisions. The study will be conducted taking into account the regulatory requirements and compliance with the law. The informed consent already approved previously by the ethics committee.


Recruitment information / eligibility

Status Recruiting
Enrollment 1
Est. completion date December 2025
Est. primary completion date December 1, 2022
Accepts healthy volunteers No
Gender All
Age group N/A and older
Eligibility Inclusion Criteria: - Clinical criteria for neurogenetic disease Exclusion Criteria: - absence of clinical condition

Study Design


Related Conditions & MeSH terms


Intervention

Genetic:
neurological and neurodegenerative diseases
NGS on a large scale of Patients with complexes phenotypes

Locations

Country Name City State
Italy Stefano Gambardella Pozzilli Isernia

Sponsors (1)

Lead Sponsor Collaborator
Neuromed IRCCS

Country where clinical trial is conducted

Italy, 

References & Publications (9)

Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008 Nov;18(11):1851-8. doi: 10.1101/gr.078212.108. Epub 2008 Aug 19. — View Citation

Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010 Feb;7(2):111-8. doi: 10.1038/nmeth.1419. Review. — View Citation

Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010 Jan;42(1):30-5. doi: 10.1038/ng.499. Epub 2009 No — View Citation

Singleton AB. Exome sequencing: a transformative technology. Lancet Neurol. 2011 Oct;10(10):942-6. doi: 10.1016/S1474-4422(11)70196-X. Review. — View Citation

Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 2010 Oct 15;19(R2):R145-51. doi: 10.1093/hmg/ddq333. Epub 2010 Aug 12. Review. — View Citation

Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet. 2009 Aug;85(2):142-54. doi: 10.1016/j.ajhg.2009.06.022. Review. — View Citation

Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009 Apr;55(4):641-58. doi: 10.1373/clinchem.2008.112789. Epub 2009 Feb 26. Review. — View Citation

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, — View Citation

Zhi D, Chen R. Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing. PLoS One. 2012;7(2):e31358. doi: 10.1371/journal.pone.0031358. Epub 2012 Feb 10. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Neurology consulting Clinical valuation 10 days
Secondary Genetic Counseling family history 1 day
Secondary Molecular testing I and/or II level Molecular analysis 3-6 months
See also
  Status Clinical Trial Phase
Active, not recruiting NCT03548779 - North Carolina Genomic Evaluation by Next-generation Exome Sequencing, 2 N/A
Completed NCT03292302 - Phase 1 Study of ELX-02 in Healthy Adults Phase 1
Withdrawn NCT03658382 - Virtual Visits for Results Disclosure N/A
Recruiting NCT02266615 - Biobank Clinical Genetics Maastricht (KG01)
Recruiting NCT02450851 - Clinical and Genetic Evaluation of Individuals With Undiagnosed Disorders Through the Undiagnosed Diseases Network
Recruiting NCT05472714 - Educational Video for Genetic Testing N/A
Recruiting NCT04285814 - Technology Development for Noninvasive Prenatal Genetic Diagnosis Using Whole Fetal Cells From Maternal Peripheral Blood
Completed NCT05443113 - Young Pectus Excavatum Patients and Genetic Defects
Completed NCT05655741 - Modified Delphi for Genomic Bereavement Care
Completed NCT03847909 - A Study to Evaluate DCR-PHXC in Children and Adults With Primary Hyperoxaluria Type 1 and Primary Hyperoxaluria Type 2 Phase 2
Completed NCT04584528 - Implementing an Individualized Pain Plan (IPP) for ED Treatment of VOE's in Sickle Cell Disease N/A
Not yet recruiting NCT06048523 - Prospective Cohort Study of Neurogenetic Diseases N/A
Completed NCT02225522 - Genomic Sequencing in Acutely Ill Neonates N/A
Enrolling by invitation NCT06089954 - Penn Medicine Biobank Return of Results Program N/A
Completed NCT03713333 - Implementing Digital Health in a Learning Health System N/A
Completed NCT03309605 - Phase 1 Study of ELX-02 in Healthy Adult Subjects Phase 1
Recruiting NCT05499091 - Functional Study to Indentify Genetic Etiology of Rare Diseases - ORIGIN N/A
Completed NCT04556487 - Turkish Affordances in the Home Environment for Motor Development-Infant Scale (AHEMD-IS)
Completed NCT04556500 - Turkish Version of the Affordance in the Home Environment for Motor Development-Toddler (AHEMD-T)
Recruiting NCT02551081 - Genomic Sequencing and Personalized Treatment for Birth Defects in Neonatal Intensive Care Units