View clinical trials related to GBM.
Filter by:The main objective of this clinical study is to evaluate the safety of XS005 cell which contains Natural Killer (NK) cells and culture-expanded injection; to determine the maximum tolerated dose . Furthermore, initial efficacy will be examined.
This phase I/II clinical trial is intended to investigate the efficacy and safety of SVZ irradiation with postoperative radiotherapy in patients with GBM.
Patients diagnosed with glioblastoma (GBM) are faced with limited treatment options. This pilot study will evaluate the safety and feasibility of combining an investigational drug called 5-ALA with neuronavigation-guided low-intensity focused ultrasound (LIFU) for patients who have recurrent GBM. Focused ultrasound (FUS) can be used to non-invasively destroy tumor tissue while preserving normal tissue. When FUS is combined with 5-ALA, this combinatorial approach is called sonodynamic therapy (SDT), and this investigational therapy is being tested for its ability to cause damage to GBM cells. SDT will take place prior to surgery for recurrent GBM.
This single center, single arm, open-label, phase I study will assess the safety of laparoscopically harvested autologous omentum, implanted into the resection cavity of recurrent glioblastoma multiforme (GBM) patients.
This single center, single arm, open-label, phase 2 study will assess the safety and efficacy of a pedicled temporoparietal fascial (TPF) or pericranial flap into the resection cavity of newly diagnosed glioblastoma multifome (GBM) patients. The objective of the Phase 2 study is to demonstrate that this surgical technique is safe and effective in a human cohort of patients with resected newly diagnosed AA or GBM and may improve progression-free survival (PFS) and overall survival (OS).
The brain is protected from any toxic or inflammatory molecule by the blood-brain barrier (BBB). This physical barrier is located at the level of the blood vessel walls. Because of these barrier properties, the blood vessels are also impermeable to the passage of therapeutic molecules from the blood to the brain. The development of effective treatments against glioblastoma is thus limited due to the BBB that prevents most drugs injected in the bloodstream from getting into brain tissue where the tumour is seated. The SonoCloud-9 (SC9) is an investigational device using ultrasound technology and specially developed to open the BBB in the area of and surrounding the tumour. The transient opening of the BBB allows more drugs to reach the brain tumour tissue. Carboplatin is a chemotherapy that is approved to treat different cancer types alone or in combination with other drugs, and has been used in the treatment of glioblastoma. Despite its proven efficacy in the laboratory on glioblastoma cells, carboplatin does not readily cross the BBB in humans. A clinical trial has shown that in combination with the SonoCloud-9, more carboplatin can reach the brain tumour tissue. The objective of the proposed trial is to show that the association - carboplatin with the SonoCloud-9 - will increase efficacy of the drug in patients with recurrent glioblastoma.
The purpose of this study is to establish the recommended phase 2 dose of eflornithine in combination with temozolomide in patients whose glioblastoma is newly diagnosed, and to evaluate safety and tolerability of this combination at that dose.
The primary goal of this Phase I study is to determine the maximum tolerated dose of oncolytic adenovirus mediated double suicide-gene therapy in combination with fractionated stereotactic radiosurgery in patients with recurrent high-grade astrocytoma undergoing resection.
Primary brain cancer kills up to 10,000 Americans a year. These brain tumors are typically treated by surgery, radiation therapy and chemotherapy, either individually or in combination. Present therapies are inadequate, as evidenced by the low 5-year survival rate for brain cancer patients, with median survival at approximately 12 months. Glioma is the most common form of primary brain cancer, afflicting approximately 7,000 patients in the United States each year. These highly malignant cancers remain a significant unmet clinical need in oncology. The investigators have completed a Phase I clinical trial that has shown that Superselective Intraarterial Cerebral Infusion (SIACI) of Bevacizumab (BV) is safe up to a dose of 15mg/kg in patients with recurrent malignant glioma. Additionally, the investigators have shown in a recently completed Phase I/II clinical trial, that SIACI BV improves the median progression free survival (PFS) from 4-6 months to 11.5 months and overall survival (OS) from 12-15 months to 23 months in patients with newly diagnosed GBM. Therefore, this two-arm, randomized trial (2:1) is a follow up study to these trials and will ask simple questions: Will this repeated SIACI treatment regimen increase progression free survival (PFS-primary endpoint) and overall survival (OS-secondary endpoint) when compared with standard of care in patients with newly diagnosed GBM? Exploratory endpoints will include adverse events and safety analysis as well as quality of life (QOL) assessments. The investigators expect that this project will provide important information regarding the utility of repeated SIACI BV therapy for newly diagnosed GBM and may alter the way these drugs are delivered to our patients in the near future.
This research study is for Glioblastoma (GBM) patients who will be beginning Optune as part of their clinical care, which is a novel treatment that utilizes - tumor treating fields (TTFields), (aka, electrical therapy), which has shown to improve overall survival in large multi-center trials. As a part of this study, participants will either receive Optune with "standard array mapping" (based on regular contrast enhanced MRI) or an "alternative (more precise) array mapping" based on sophisticated state of the art MRI techniques including "whole brain spectroscopy". Whole brain MRI spectroscopy provides additional metabolic information to map out the full extent of tumor spreading within the brain (far beyond from what is seen on regular MRI), by identifying certain metabolites that are present in cancer cells versus healthy tissue. This study is being performed to show whether alternative array mapping improves treatment outcomes, as opposed to the standard array mapping, by maximizing delivery of TTFields dose, thereby achieving more effective tumor cell killing, decreasing the rate of local recurrence, and improving the overall survival as well as quality of life measures.