View clinical trials related to Gaucher's Disease.
Filter by:The purpose of this study is to examine how the skeleton responds to repeated doses of enzyme replacement therapy in patients with type I Gaucher's disease who have had their spleens removed. Gaucher disease is a lysosomal storage disease resulting from glycocerebroside accumulation in macrophages due to a genetic deficiency of the enzyme glucocerebrosidase. It may occur in adults but occurs most severely in infants, in whom cerebroside also accumulates in neurons. Patients with Gaucher's disease experience enlargement of the liver and spleen and bone destruction. The condition is passed from generation to generation through autosomal recessive inheritance. Type I is the most common form. It is a chronic non-neuronopathic form, meaning the disease does not affect nerve cells. The symptoms of type I can appear at any age. In this study patients will be divided into three groups. Each group will receive different doses of enzyme replacement (Ceredase). In addition, two of the three groups will also receive doses of a form of vitamin D (calcitriol). Researchers believe the groups receiving vitamin D will have an improved response as compared to those patients only receiving enzyme replacement. Patients in each group who respond to enzyme replacement with increases in bone density will be compared to the other treatment groups.
Gaucher disease is a lysosomal storage disease resulting from glucocerebroside accumulation in macrophages due to a genetic deficiency of the enzyme glucocerebrosidase. It may occur in patients of all ages. The condition is marked by enlargement of the liver and spleen (hepatosplenomegaly), low blood and platelet counts, and bone abnormalities. The condition is passed from generation to generation on via autosomal recessive inheritance. There are actually three types of Gaucher disease. Type I is the most common form. It is a chronic non-neuronopathic form, meaning the disease does not affect the nervous system. The symptoms of type I can appear at any age. Type 2 Gaucher disease presents prenatally or in infancy and usually results in death for the patient. Type 2 is an acute neuronopathic form and can affect the brain stem. It is the most severe form of the disease. Type 3 Gaucher disease is also neuronopathic, however it is subacute in nature. This means the course of the illness lies somewhere between long-term (chronic) and short-term (acute). Currently there is not a cure for Gaucher disease. Treatment for the disease has traditionally been supportive. In some severely affected patients, bone-marrow transplants have corrected the enzyme deficiency, but it is considered a high-risk procedure and recovery can be very slow. Enzyme replacement therapy is another therapy option and has been approved by the Food and Drug Administration (FDA) for use in type 1 patients. PEG-glucocerbrosidase is a drug designed to clear out the accumulation of lipid (glucocerebroside) from the blood stream. The drug is actually an enzyme attached to large molecules called polyethylene glycol (PEG). The large molecules of PEG allow the enzyme to remain in the blood stream for long periods of time. By modifying glucocerebrosidase with PEG, it is believed that smaller doses will be required, meaning a reduction in cost for the patient and more convenient administration of the drug. The purpose of this study is to evaluate the effects and safety of enzyme replacement therapy using PEG- glucocerebrosidase for the treatment of Gaucher disease.
Gaucher disease is a lysosomal storage disease resulting from glycocerebroside accumulation in macrophages due to a genetic deficiency of the enzyme glucocerebrosidase. It may occur in adults but occurs most severely in infants, in whom cerebroside also accumulates in neurons. Patients with Gaucher's disease experience enlargement of the liver and spleen and bone destruction. The condition is passed from generation to generation through autosomal recessive inheritance. There are actually three types of Gaucher's disease. Type I is the most common form. It is a chronic non-neuronopathic form, meaning the disease does not affect nerve cells. The symptoms of type I can appear at any age. Type II appears in infancy and usually results in death for the patient. Type II is an acute neuronopathic form and can affect the brain stem. It is the most severe form of the disease. Type III is also neuronopathic, however it is subacute in nature. This means the course of the illness lies somewhere between long-term (chronic) and short-term (acute). The purpose of this study is to examine the effects of enzyme replacement therapy on patients with Gaucher's disease, specifically those types directly affecting the nervous system (neuronopathic). Patients with Gaucher's disease types II and III will be selected to participate in the study and receive enzyme replacement therapy. Patients participating will undergo a variety of tests to measure levels of hemoglobin concentration, liver volume, and spleen volume. Improvements in these measures will be compared other laboratory tests measuring the involvement of the nervous system.
Gaucher's disease is a lysosomal storage disease resulting from glycocerebroside GLUCOCEREBROSIDE (1) accumulation in macrophages due to a genetic deficiency of the enzyme glucocerebrosidase. It may occur in patients of all ages. The most severe form, Type 2 Gaucher's Disease occurs in infants who die in the first years of life (with rapidly progressive neurologic deterioration). The condition is passed from generation to generation through autosomal recessive inheritance. Fabry's disease isa genetic disorder (X-linked recessive) due to the absence of the enzyme a-galactosidase A. The disease is characterized by abnormal collections of glycolipids in cells (histiocytes) within blood vessel walls, tumors on the thighs, buttocks, and genitalia(2) decreased sweating, tingling sensations in the extremities, and cataracts. Patients with Fabry's disease die from complications of the kidney, heart, or brain. Both conditions are caused by the absence of specific enzymes (3). Patients with these conditions are missing (3) or have defective genes needed for the normal production of these enzymes. Studies on the blood-forming cells in bone marrow have lead to gene therapies using retroviruses as vehicles to carry and insert working genes into abnormal or diseased cells. This study is designed to measure the safety and effectiveness of transferring working copies of genes responsible for making missing enzymes into the cells of patients with Gaucher's or Fabry disease.