View clinical trials related to GATA2.
Filter by:Background: People with GATA2 deficiency have a mutation on the GATA2 gene. This gene affects immune function. People with this disease are prone to serious infections; in time, they may develop blood cancers. A hematopoietic stem cell (HSC) transplant can cure GATA2 deficiency, but using stem cells donated by other people can cause serious side effects. Objective: To test a new drug (JSP191) to see if it can make HSC transplants safer. Eligibility: People aged 6 to 70 years who have GATA2 deficiency. Design: Participants will be screened. They will have a physical exam, with blood and urine tests. They will have tests of their heart and lung function. They may have a bone marrow biopsy: Their hip will be numbed; a large needle will be inserted to draw out tissue from inside the pelvis. Participants will have a central venous catheter placed in a vein of the neck or chest. This will be used to draw blood and administer drugs. JSP191 will be given through the catheter about 11 days before the transplant. This is part of conditioning: preparing the body to receive the new stem cells. Conditioning also includes other medications and total body irradiation. Donor stem cells will be administered through the catheter. Participants will receive other approved drugs to help prevent side effects. Participants will stay in the hospital from the beginning of the conditioning until several weeks after the transplant. They will remain in the local area for 100 days after discharge; they will come to the clinic at least once a week during this time. Follow-up visits will continue for 3 years.
Background: - GATA2 deficiency is a disease caused by mutations in the GATA2 gene. It can cause different types of leukemia and other diseases. Researchers want to see if a stem cell transplant can be used to treat this condition. A stem cell transplant will give stem cells from a matching donor (related or unrelated) to a recipient. It will allow the donor stem cells to produce healthy bone marrow and blood cells that will attack the recipient s cancer cells. Objectives: - To see if stem cell transplants are successful at treating GATA2 mutations and related conditions. Eligibility: - Recipients who are between 8 and 70 years of age and have GATA2 deficiency. Design: - All participants will be screened with a physical exam and medical history. Blood samples will be collected. Recipients will have imaging studies and other tests. - Recipients will have chemotherapy or radiation to prepare for the transplant. On the day of the transplant, they will receive the donated stem cells. - Recipients will stay in the hospital until their condition is stable after transplant. - Frequent blood tests and scans will be required for the first 6 months after the transplant, followed by less frequent visits over time.
The purposes of this study are to 1) identify the genes responsible for certain immune disorders, 2) learn about the medical problems they cause, and 3) learn how to predict who is likely to develop these disorders and what the risk is of passing them on to children. The immune system is the body s defense system. Some immune deficiencies impair a person s ability to fight infections; others render a person susceptible to allergies, or to autoimmune diseases such as lupus or arthritis, in which the immune cells (white blood cells) attack and destroy the body s own tissues. Patients with immune disorders known or suspected to have a genetic basis and their family members may enroll in this study. Eligibility will be determined by a review of the patient s medical records and family medical history. Participants will provide a small blood sample for genetic (DNA) and white blood cell analysis. Gene samples (but not white blood cells) may also be obtained by mouth brushing or skin biopsy. For the mouth brushing, a small brush is rubbed against the inside of the cheeks for 1 minute to wipe off some cells. For the skin biopsy, a small circle of skin (about 1/8 inch) is removed under local anesthetic. Pregnant women may be asked to provide a fetal sample (amniotic fluid cells or chorionic villus sample). All samples will be used for immune or genetic studies of the family s immune disorder. If test results show a specific genetic variation responsible for the family s immune disorder, a report will be sent to the patient s doctor or genetic counselor, who will discuss the implications for the family. NIH researchers and genetic counselors will also be available to explain results and answer questions. Information will not be available in the case of disorders that cannot yet be linked to a specific genetic abnormality. Information from this study will increase knowledge about the immune system and what causes immune deficiencies. Participants may also learn the underlying cause of an immune disorder that affects them or someone in their family information may be useful in guiding treatment and in making decisions regarding family planning.