View clinical trials related to Friedreich Ataxia.
Filter by:This study will determine whether a drug called idebenone is safe and effective in reducing the level of oxidants that are believed to damage the nervous system and hearts in patients with Friedreich's ataxia. Friedreich's ataxia is caused by an abnormality in the gene that makes a protein called frataxin, which is necessary for the proper functioning of energy-producing parts of cells called mitrochondria. In Friedreich's ataxia, the mitochondria become overloaded with iron, and high levels of harmful compounds called oxidants are formed. These oxidants are believed to damage the cells of the nervous system and hearts of people with Friedreich's ataxia. Idebenone is a man-made drug similar to a naturally occurring compound known as Coenzyme Q10. This study will test whether idebenone can alleviate some of the symptoms of Friedreich's ataxia and slow or halt the progression of the disease. Patients with genetically confirmed Friedreich's ataxia who are between 9 and 18 years of age, weigh between 65 and 175 pounds and can walk 25 feet with or without an assistive device may be eligible for this study. Candidates are screened with blood tests and a review of their medical records. Participants undergo the following tests and procedures: - Medical interview and physical examination. Tests include blood and urine tests, an electrocardiogram, or EKG (recording of the electrical activity of the heart), echocardiogram (ultrasound test showing the pumping action of the heart, thickness of the heart walls, and any valve leakage), and a detailed neurological examination, including maneuvers such as copying a drawing and putting pegs in a board. Patients' parents are asked questions about how they feel their child's disease affects the child's quality of life. - Magnetic resonance imaging (MRI) to examine the heart muscle and blood flow to the heart. MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that is moved into the doughnut-shaped MRI scanner, wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. A catheter (plastic tube) is placed in a vein in the child's arm so that a chemical called gadolinium can be injected during the MRI study. Gadolinium brightens areas of the heart, improving the ability to see the heart and blood flow. - Physical medicine and rehabilitation evaluations to test the child's physical functioning. These tests include gait evaluation, measurements of the ability to exert and maintain a constant force, assessment of visual-motor control and fine motor control, aerobic exercise endurance testing, and measurement of the ability of the child's heart and lungs to increase their effectiveness with exercise. - Idebenone/placebo treatment. Patients are given a 6-month supply of either idebenone pills or placebo (pills that look like the study drug but have no active ingredient) to take three times a day. Patients are seen by their primary care physician after 1 and 3 months on the study medication for a brief physical examination. In addition, they have blood and urine tests once a month while on medication to check for any abnormalities. - 6-month examination. After 6 months on the study drug, patients return to NIH to repeat all the tests listed above to determine the effects of idebenone treatment.
Friedreich ataxia, an autosomal recessive condition, ascribed to frataxin gene expansion, has been shown to result from an iron- induced injury to the mitochondrial respiratory chain. Buffering free radicals with short-chain quinones (Idebenone) protects the patients against cardiomyopathy but not CNS involvement. Removing CNS iron should limit the impact of the neurological symptoms of the disease.
This study will determine the highest amount of idebenone that can be taken without harmful side effects in children, teenagers, and adults with Friedreich's ataxia, a progressive degenerative disease that affects several body systems. Studies in France and Canada showed that patients with Friedreich's ataxia who took idebenone had a decrease in the size of their left ventricle (main pumping chamber of the heart), which is often enlarged in this disease. It is possible that idebenone may also prevent the progression of nervous system degeneration in Friedreich's ataxia. Patients 5 years of age and older with Friedreich's ataxia may be eligible for this study. Candidates are screened with a blood test and review of their medical records, including genetic studies. Participants undergo the following procedures during a 6-day hospital admission to the NIH Clinical Center: - Placement of an intravenous catheter (plastic tube inserted into a vein) for collecting blood samples after drug administration - Blood and urine tests - Heart examination, including electrocardiogram (EKG), to assess heart function and size. - Idebenone therapy: Patients take three tablets a day (at 7 AM, 1 PM and 7 PM) on days 2, 3 and 4 of hospitalization. Blood samples are collected through the IV tube at 0.5, 1, 2, 4, and 6 hours after the first dose on day 2, then at 1 hour after the first and third doses every day, and then at 1, 2, 4, 8, 12, 24, 36, and 48 hours after the last dose on day 4 to determine how the body uses and eliminates the drug. - Monitoring for drug side effects: Patients have frequent checks of vital signs (blood pressure, pulse, temperature, breathing rate) and a brief physical examination to check for drug side effects from the start of drug therapy on day 2 until at least 43 hours after the last dose on day 4. Patients who experience no difficulties are discharged from the hospital after the sixth day with a 1-month supply of medication to take 3 times a day at home. They are contacted by phone every 2 weeks while taking the medication to check side effects. Blood tests are also done every 2 weeks to check for any abnormalities.
The purposes of this study are to learn about significant life changes for people with Friedreich's ataxia and about patients' experiences with health care providers. Friedreich's ataxia is a rare genetic disorder in which patients experience progressive muscle weakness and loss of coordination in the arms and legs. They may have other complications, such as vision and hearing impairment, dysarthria, scoliosis, diabetes, and heart disease. The study will explore the impact of this chronic progressive illness on transitional life events, such as career choice and marriage, and the role of family members and health care providers-particularly genetic counselors-in helping patients progress through these events. Patients with Friedreich's ataxia who are 18 years of age or older may be eligible for this study. Those enrolled will participate in a 45- to 60-minute interview by phone or in person, in which they will be asked questions about important changes in their lives and their past experiences with health care providers. The interview will be audiotaped.
This study will determine the highest dose of idebonone that can safely be given to patients with Friedrich's ataxia, an inherited degenerative disease that causes loss of muscle coordination, speech problems, weakness and sensory loss. Enlargement of the left ventricle (the large pumping chamber of the heart) is also common in this disease. In studies in France and Canada, patients with Friedrich's ataxia who were given idebonone, an antioxidant similar to the dietary supplement coenzyme Q, had a decrease in the size of their left ventricle. Patients 5 years and older with Friedrich's ataxia may be eligible for this study. Pregnant and lactating women may not participate. Candidates will be screened with a medical history and physical examination and a review of genetic studies. Patients who have not had genetic studies will be offered genetic counseling and testing to confirm or rule out Friedrich's ataxia. Participants will be admitted to the NIH Clinical Center for 3 days. They will have blood and urine tests and a heart evaluation, including an echocardiogram-a procedure that uses sound waves to produce images of the heart, and an electrocardiogram-a study of the electrical activity of the heart. When these tests have been completed, patients will take an idebonone capsule. They will be monitored for side effects for 72 hours. Blood samples will be collected through an intravenous catheter (flexible plastic tube placed in a vein) 0.5, 1, 2, 3, 4, 6, 12, 24, 48 and 72 hours after the drug is taken to determine how long it takes for the drug to be eliminated from the body. Patients will return for a follow-up visit within 1 to 8 weeks. Those who experienced no serious side effects may receive another, higher dose of the drug, with at least 6 days between doses.