Clinical Trials Logo

Clinical Trial Summary

Due to the increase in the average age of the population, the projections on the number of age-dependent bone fractures appear to be constantly increasing. They are mainly due to bone pathologies, including osteoporosis. The latter leads to a reduction in bone mineral density and deterioration of the micro-architecture, with a consequent increase in bone fragility. However, the mechanisms of damage at the micro-scale have not yet been elucidated and there is no universally recognized damage criterion. Recent research has evaluated the importance of implementing computational models to study the influence of bone gaps, canaliculi and microporosities on the propagation of damage. These models need to be validated through experimental tests, still lacking, in particular on human bones, in the current scientific landscape. Once the experimental validation of computational models has been developed, it will be possible to introduce new fracture indices at the micro-scale, useful for a preventive diagnosis of osteoporosis.


Clinical Trial Description

The study of the mechanisms of bone damage, which occur at the multiscale, is of fundamental importance for the understanding of fracture processes. In particular, age-related fractures are continuously increasing due to the increase in average age and widespread diseases such as osteoporosis. They result in high economic burdens, morbidity (including psychological, e.g., frailty), and increased mortality. In order to reduce the impact of bone fractures on health and economy, early diagnosis is the key. In this context, one must consider that bone is characterized by a complex hierarchical structure. Both the cortical and trabecular sections consist of micrometric lamellae, composed of collagen fibrils, within which osteocytes are found. They reside in sub-micrometer cavities called lacunae, which are connected by a dense network of canaliculi. At the nanoscale, the fibrils consist primarily of collagen and hydroxyapatite crystals. This complex architecture is reflected in fracture patterns: damage, in fact, occurs at the multiscale. However, fracture patterns and their associated physical phenomena are still not understood, especially at the microscale. Recently, microscale imaging techniques have been combined with subject-specific numerical models, which are able to calculate local values of bone stress and strain. Preliminary studies have focused on evaluating a possible interaction between micro-cracks and microstructural porosity. This particular research focuses on the lacunar network, which is presumed to significantly affect bone resistance to fracture although the actual role of the lacunar network is not yet elucidated. First, lacunae are areas of stress concentration, which apparently lead to weakening of the bone structure. However, in most cases, the lacunae make a positive contribution to toughness by deflecting the crack front. The connection between the lacunae, determined by the network of canaliculi, is also reduced in osteoporotic subjects, preventing the slowing of damage. In this sense, bone can be considered a damage tolerant material. Donaldson et al developed computational models and estimated a threshold for microdamage initiation and propagation. They used computerized micro-tomography of murine femurs and evaluated the influence of different algorithms on the propagation of in-silico damage. Further results showed that the damage always occurs on the surfaces of blood vessels or porosities and does not instead start from the lacunae. However, further simulations and models would be needed to verify the effectiveness of the damage models. Computational damage models also require experimental validation. Preliminary studies have been conducted in two main directions: in-vivo imaging and image-guided failure assessment (IGFA) techniques. The first approach allows nondestructive monitoring of bone damage in living animals. The second approach, implemented by A. Levchuk et al. (8), shows enormous potential by allowing the study of microcrack initiation and propagation with sub-micrometer resolution, but only on small animals. The current research for the first time wants to perform tests on human bone samples applying IGFA techniques. Despite several studies on the characterization of damage models at the micro-scale, a validation of computational models of fracture on human subjects is still lacking. In addition, the role of morphological features at the micro-scale in samples is still unknown. These micro-scale studies could improve clinical understanding of bone fracture and prediction of fracture risk. Currently, clinicians use bone mineral density, which is a macro-scale parameter, as the most common predictor of bone fracture. However, recent studies demonstrate the importance of a thorough characterization of the geometric and morphologic characteristics of the microarchitecture. OBJECTIVES General Objective The study aims at the experimental validation of computational models of bone damage at the micro-scale. The general objective is pursued by controlled damage in a micro-compression machine on human bone samples from femoral head. The machinery is placed inside a synchrotron. Primary Objective The primary objective of the present study is to evaluate the difference in the attraction of bone damage with respect to gaps in the two groups considered (osteoporotic and non-osteoporotic) following micro-compression testing. The discriminating parameter chosen turns out to be the number of bone gaps encountered by micro-damage. We expect to observe an effect size of 0.4 between the two groups with respect to the chosen parameter. Secondary Objectives - Determination of the role of gaps, canaliculi and other bone microstructures in damage. Human bone samples are scanned by micro-tomograph for the definition of microstructural morphological parameters and the realization and analysis of numerical models. - Validation of these numerical models of damage by micro-compression tests carried out in situ in a synchrotron of adequate resolution - Quantification of damage in human bone samples affected by osteoporosis - Definition of micro-scale fracture indices, useful for the early diagnosis of osteoporosis ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04787679
Study type Observational
Source Politecnico di Milano
Contact Laura M Vergani
Phone +393393758630
Email luigi.zagra@fastwebnet.it
Status Recruiting
Phase
Start date November 9, 2020
Completion date November 9, 2027

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06287502 - Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis N/A
Completed NCT03822078 - Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Denosumab (AMG 162) in Japanese Postmenopausal Women Phase 1
Recruiting NCT05845021 - Surgeon-Initiated Bone Health Referral Pathway in Patients Undergoing Lower Extremity Arthroplasty N/A
Completed NCT00092066 - A Study to Evaluate the Safety, Tolerability, and Efficacy of an Investigational Drug and Dietary Supplement in Men and Postmenopausal Women With Osteoporosis (0217A-227) Phase 3
Recruiting NCT04754711 - Interest of Nutritional Care of Children With Sickle Cell Disease on Bone Mineral Density and Body Composition N/A
Completed NCT04736693 - Replication of the HORIZON Pivotal Fracture Trial in Healthcare Claims Data
Not yet recruiting NCT06431867 - Primary Care Management of Osteoporosis in Older Women
Completed NCT02922478 - Role of Comorbidities in Chronic Heart Failure Study
Recruiting NCT02635022 - Fragility Fracture Liaison Service and Anti-osteoporosis Medication Monitoring Service Study
Recruiting NCT02616627 - Association Between DXA Results and the Complications, Clinical Courses and Outcomes in Chronic Dialysis Patients
Active, not recruiting NCT02617303 - Prevention of Falls and Its Consequences in Elderly People N/A
Completed NCT02566655 - Clinical Trial of Intravenous Infusion of Fucosylated Bone Marrow Mesenchyme Cells in Patients With Osteoporosis Phase 1
Completed NCT02559648 - Denosumab vs Placebo in Patients With Thalassemia Major and Osteoporosis Phase 2
Completed NCT03420716 - Symbiotic Yogurt, Calcium Absorption and Bone Health in Young Adult Women N/A
Not yet recruiting NCT02223572 - Secondary Fracture Prevention in Patients Who Suffered From Osteoporotic Fracture N/A
Completed NCT02003716 - DeFRA Questionnaire as an Anamnestic Form N/A
Unknown status NCT01913834 - Nasally and sc Administered Teriparatide in Healthy Volunteers Phase 1
Not yet recruiting NCT01854086 - Compliance and Persistence With Osteoporosis Treatment and Attitude Towards Future Therapy Among Post-menopausal Israeli Women During Drug Treatment or Drug Holiday N/A
Completed NCT01757340 - Calorie Restriction With Leucine Supplementation N/A
Completed NCT01694784 - Understanding and Discouraging Overuse of Potentially Harmful Screening Tests N/A