View clinical trials related to Fracture Multiple.
Filter by:This study has been added as a sub study to the Simulation Training for Emergency Department Imaging 2 study (ClinicalTrials.gov ID NCT05427838). This work aims to evaluate the impact of an Artificial Intelligence (AI)-enhanced algorithm called Boneview on the diagnostic accuracy of clinicians in the detection of fractures on plain XR (X-Ray). The study will create a dataset of 500 plain X-Rays involving standard images of all bones other than the skull and cervical spine, with 50% normal cases and 50% containing fractures. A reference 'ground truth' for each image to confirm the presence or absence of a fracture will be established by a senior radiologist panel. This dataset will then be inferenced by the Gleamer Boneview algorithm to identify fractures. Performance of the algorithm will be compared against the reference standard. The study will then undertake a Multiple-Reader Multiple-Case study in which clinicians interpret all images without AI and then subsequently with access to the output of the AI algorithm. 18 clinicians will be recruited as readers with 3 from each of six distinct clinical groups: Emergency Medicine, Trauma and Orthopedic Surgery, Emergency Nurse Practitioners, Physiotherapy, Radiology and Radiographers, with three levels of seniority in each group. Changes in reporting accuracy (sensitivity, specificity), confidence, and speed of readers in two sessions will be compared. The results will be analyzed in a pooled analysis for all readers as well as for the following subgroups: Clinical role, Level of seniority, Pathological finding, Difficulty of image. The study will demonstrate the impact of an AI interpretation as compared with interpretation by clinicians, and as compared with clinicians using the AI as an adjunct to their interpretation. The study will represent a range of professional backgrounds and levels of experience among the clinical element. The study will use plain film x-rays that will represent a range of anatomical views and pathological presentations, however x-rays will present equal numbers of pathological and non-pathological x-rays, giving equal weight to assessment of specificity and sensitivity. Ethics approval has already been granted, and the study will be disseminated through publication in peer-reviewed journals and presentation at relevant conferences.