Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT05264454
Other study ID # HFNCIVC1
Secondary ID
Status Not yet recruiting
Phase N/A
First received
Last updated
Start date July 1, 2022
Est. completion date June 30, 2023

Study information

Verified date March 2022
Source Nova Scotia Health Authority
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The size of the inferior vena cava (IVC) using point of care ultrasound is used in resuscitation of patients who are critically ill and is now being used as a standard part of resuscitation in many clinical situations. Multiple factors can effect the size of the IVC including the type of oxygen devices the patient is currently on. In the ICU setting, the use of High Flow Nasal Cannula (HFNC) is often used to help in patients who are critically ill. There is some evidence to suggest that the use of HFNC can effect the size of the IVC measurement but the extent of the effect has not been well characterized. The purpose of this study is to determine the effect HFNC has on the size of the IVC measured using a point of care ultrasound.


Description:

Shock is a state of decreased perfusion and inadequate oxygen delivery to tissues. This results in end organ damage and is associated with high morbidity and mortality, regardless of etiology. Shock associated with an infection is known as septic shock. In the intensive care unit (ICU) population, septic shock is the most common admission to the ICU and, with a mortality rate approaching 30%, is one of the leading causes of death. Early antibiotics and early intravenous fluid administration are a key component of resuscitation, but over-resuscitation with fluids is associated with adverse outcomes, including death. Therefore, methods to determine the ideal amount of fluid to administer are required. Increasingly, the use of a bedside ultrasound, known as point of care ultrasound (PoCUS), can be used to determine the cause of shock and to help guide the ideal amount of fluid administration. One method for determining the appropriate amount of fluid to administer is the measurement of the size of the inferior vena cava (IVC). The IVC is a large vein that travels through the abdomen and delivers blood back to the heart. In a breathing patient, the size of the IVC varies with the breathing cycle. During inspiration the contraction of the diaphragm results in the generation of a negative pressure inside the chest cavity. This pressure change results in a decrease in size of the IVC during inspiration; contrary, during expiration, the IVC will be maximally distended. One of the best methods for determining fluid responsiveness using IVC is known as the IVC collapsibility index, which is defined as the [(Maximum diameter IVC-Minimum diameter) / Maximum diameter IVC] x 100. If the index is greater than 41% (range, 40%-42%), the LR ranged from 3.5 (95% CI, 1.1-15) to 9.3 (95% CI, 0.88-51) that the patient would respond to fluid. One limitation to the use of PoCUS to assess the IVC is that the size of the vessel is affected by pressure inside the chest cavity. For example, patients who have obstructive sleep apnea (OSA) are often treated using a device called a continuous positive airway pressure (CPAP) machine. CPAP works by applying a constant amount of air pressure to prevent the soft tissues in the neck from collapsing and obstructing the airway. This constant pressure results in an increase of the chest cavity pressure which has been shown to increase the IVC diameter and a decreased IVC collapsibility index. This could result in an error in not administering fluid when the patient would benefit from it. A patient population where this error may occur are those admitted to hospital with pneumonia. Pneumonia is the most common presentation of septic shock in critical care. Often times these patients present with septic shock as well as respiratory failure, which is treated with supplemental oxygen. Increasingly, high flow nasal cannulas (HFNC) have been used in the initial management of respiratory failure. Studies in the critically ill populations have demonstrated that, compared to conventional oxygen therapy, HFNC provides superior oxygenation and decreases the need for intubation. HFNC is a device that is able to generate very high flows (up to 60 L/min) at an adjustable FiO2 such that even at very high peak inspiratory flows (i.e. breathing in quickly), FiO2 remains consistent. These high flows generate a CPAP effect, with an approximately linear relationship of 1 cmH2O for every 10 L/min of flow. Therefore, it is possible that patients who are placed on HFNC may have an artificially enlarged IVC measurement by ultrasound. Considering the increasing scope and utilization of PoCUS as well as HFNC in the treatment of respiratory failure, it is important to establish what effect HFNC has on POCUS IVC measurements. To date, only one study has examined the effect of HFNC on the size of IVC. This study was conducted in heart failure patients where the patients were all volume overloaded (distended IVC). The study placed patients in heart failure on HFNC on flows of 20 and 40L/min which resulted in a decrease in the IVC collapsibility index. However, no study has examined the effect of HFNC non-volume overloaded patients at 60L /min. Our hypothesis is that the application of HFNC will increase in the size of the IVC and decrease the IVC collapsibility index in healthy patients.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 45
Est. completion date June 30, 2023
Est. primary completion date December 31, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 40 Years
Eligibility Inclusion Criteria: - Ambulatory - 18-40 years old Exclusion Criteria: - Severe lung disease (e.g. poorly controlled asthma, COPD with FEV1 <40%) - Congestive heart failure (diastolic dysfunction, ejection fraction < 50%, severe valvular disorders) - Renal failure - Complete nasal obstruction or facial deformities - BMI > 30 - Pregnancy

Study Design


Related Conditions & MeSH terms


Intervention

Device:
high flow nasal cannulae
The plan is to examine the effects of the size of the IVC size based upon varrying levels of high flow nasal cannulae flow

Locations

Country Name City State
Canada QEII Health Sciences Centre Halifax Nova Scotia

Sponsors (1)

Lead Sponsor Collaborator
Nova Scotia Health Authority

Country where clinical trial is conducted

Canada, 

References & Publications (18)

Airapetian N, Maizel J, Alyamani O, Mahjoub Y, Lorne E, Levrard M, Ammenouche N, Seydi A, Tinturier F, Lobjoie E, Dupont H, Slama M. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015 Nov 13;19:400. doi: 10.1186/s13054-015-1100-9. — View Citation

Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001 Jul;29(7):1303-10. — View Citation

Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013 Aug 29;369(9):840-51. doi: 10.1056/NEJMra1208623. Review. Erratum in: N Engl J Med. 2013 Nov 21;369(21):2069. — View Citation

Au SY, Lau CL, Chen KK, Cheong AP, Tong YT, Chan LK. Hemodynamic Effects of Noninvasive Positive-Pressure Ventilation Assessed Using Transthoracic Echocardiography. J Cardiovasc Echogr. 2018 Apr-Jun;28(2):114-119. doi: 10.4103/jcecho.jcecho_53_17. — View Citation

Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids? JAMA. 2016 Sep 27;316(12):1298-309. doi: 10.1001/jama.2016.12310. Review. — View Citation

Chaves RCF, Corrêa TD, Neto AS, Bravim BA, Cordioli RL, Moreira FT, Timenetsky KT, de Assunção MSC. Assessment of fluid responsiveness in spontaneously breathing patients: a systematic review of literature. Ann Intensive Care. 2018 Feb 9;8(1):21. doi: 10.1186/s13613-018-0365-y. Review. — View Citation

Jenkinson C, Davies RJ, Mullins R, Stradling JR. Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet. 1999 Jun 19;353(9170):2100-5. — View Citation

Lee CC, Mankodi D, Shaharyar S, Ravindranathan S, Danckers M, Herscovici P, Moor M, Ferrer G. High flow nasal cannula versus conventional oxygen therapy and non-invasive ventilation in adults with acute hypoxemic respiratory failure: A systematic review. Respir Med. 2016 Dec;121:100-108. doi: 10.1016/j.rmed.2016.11.004. Epub 2016 Nov 3. Review. — View Citation

Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017 May;43(5):625-632. doi: 10.1007/s00134-016-4675-y. Epub 2017 Jan 27. — View Citation

Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014 Jan 1;5(1):4-11. doi: 10.4161/viru.27372. Epub 2013 Dec 11. Review. — View Citation

Muller L, Bobbia X, Toumi M, Louart G, Molinari N, Ragonnet B, Quintard H, Leone M, Zoric L, Lefrant JY; AzuRea group. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012 Oct 8;16(5):R188. doi: 10.1186/cc11672. — View Citation

National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006 Jun 15;354(24):2564-75. Epub 2006 May 21. — View Citation

Navaneelan T. Deaths involving sepsis in Canada. Health at a Glance. 2016;(82):11.

Parke RL, Bloch A, McGuinness SP. Effect of Very-High-Flow Nasal Therapy on Airway Pressure and End-Expiratory Lung Impedance in Healthy Volunteers. Respir Care. 2015 Oct;60(10):1397-403. doi: 10.4187/respcare.04028. Epub 2015 Sep 1. — View Citation

Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: Rapid Ultrasound in SHock in the evaluation of the critically lll. Emerg Med Clin North Am. 2010 Feb;28(1):29-56, vii. doi: 10.1016/j.emc.2009.09.010. — View Citation

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar;43(3):304-377. doi: 10.1007/s00134-017-4683-6. Epub 2017 Jan 18. — View Citation

Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8. doi: 10.1016/j.echo.2010.05.010. — View Citation

Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2014 Feb 6;370(6):583. doi: 10.1056/NEJMc1314999. — View Citation

* Note: There are 18 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Inferior vena cava maximal diameter in millimeter 3 minutes after the intervention
Secondary Inferior vena cava maximal collapsibility index [(Maximum diameter Inferior vena cava -Minimum diameter) / Maximum diameter Inferior vena cava] x 100 3 minutes after the intervention
See also
  Status Clinical Trial Phase
Completed NCT04095143 - Ultrasound Markers of Organ Congestion in Severe Acute Kidney Injury
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Completed NCT05070819 - Atrial Natriuretic Peptide in Assessing Fluid Status N/A
Withdrawn NCT04870073 - Retrograde Autologous Priming and Mannitol for Reducing Hemodilution in Cardiac Surgery Phase 3
Recruiting NCT02989051 - Fluid Restriction Keeps Children Dry Phase 2/Phase 3
Completed NCT00852514 - The Optimization of Blood Pressure and Fluid Status Control With Eight-Polar Bioelectrical Impedance Analysis Phase 4
Completed NCT00517127 - Crystalloids Versus Colloids During Surgery Phase 4
Not yet recruiting NCT05983549 - Neutral Versus Liberal fLuId In Traumatic Brain Injury: a Randomised Controlled Trial N/A
Completed NCT03929471 - Target Weight Correction and Vascular Stiffness in Hemodialysis Patients N/A
Recruiting NCT06071026 - Hemodynamic Effects of Variations in Net Ultrafiltration Rate During Continuous Renal Replacement Therapy. N/A
Completed NCT02903316 - Predicting Fluid Responsiveness in on Pump Coronary Artery Bypass Graft Using Extra Systoles N/A
Terminated NCT02458157 - Forced Fluid Removal in High Risk Acute Kidney Injury Phase 4
Completed NCT02325856 - Application of Bioimpedance Spectroscopy in Taiwan Dialysis Patients N/A
Completed NCT01628731 - Furosemide Versus Ethacrynic Acid in Children With Congenital Heart Disease Phase 3
Not yet recruiting NCT05647200 - Optimization of Prime Fluid Strategy to Preserve Microcirculatory Perfusion During Cardiac Surgery With Cardiopulmonary Bypass, Part II N/A
Completed NCT03768752 - Diastolic Dysfunction and Interstitial Lung Edema in Septic Patients
Terminated NCT03553394 - Effects of Restrictive Fluid Strategy on Postoperative Oliguric Pancreatic Surgery Patients N/A
Completed NCT06097923 - Implementation of Fluid Strategies Using Real-time Bioelectrical Analyzer in Surgical Intensive Care Unit (SICU) N/A
Recruiting NCT04215692 - Lung Ultrasound-guided Fluid Therapy in Pediatric Intensive Care Unit Patients N/A
Not yet recruiting NCT03322410 - Hydratation Status at Initiation of Peritoneal Dialysis: Study of the Role of Peritoneal Permeability N/A