View clinical trials related to Fibrous Dysplasia.
Filter by:Fibrous Dysplasia/McCune-Albright syndrome (FD/MAS) is a rare disease, consisting of the replacement of normal bone tissue with fibrous tissue. FD lesions may be isolated in one or more bones or may be associated with endocrinopathies in McCune-Albright syndrome. Bone lesions constitute of weak bone tissue, leading to higher risk of fractures, pain and decreased quality of life. There is no cure for FD lesions and current therapies failed to soothe patients' complaints or to display any effect on progression of the lesions on imaging. However, the RANKL-inhibitor Denosumab demonstrated encouraging results in mouse models and in off-label clinical use, leading to clinical, biochemical and radiographical improvements. Study's aim is to investigate whether 3-monthly Denosumab will improve the clinical, radiological and biochemical manifestations of FD bone lesions.
Background: Fibrous dysplasia (FD) is a disease that affects the bones. It causes bone lesions that can become weak and lead to fractures, deformity, and nerve injuries. FD bone lesions begin to develop soon after birth and grow during childhood. The lesions stop growing in adults but can still cause disability. Researchers want to find ways to stop the growth of FD bone lesions. Objective: To test a study drug (denosumab) in children with FD. Eligibility: Children aged 4 to 14 years with FD and who are also enrolled in the Screening and Natural History protocol (98-D-0145). Design: Participants will have a screening visit at the NIH clinic or by telehealth. Their medical history will be reviewed. Participants will stay overnight in the hospital 4 times in 76 weeks. Each stay will last 5 to 7 nights. Participants will also visit a local lab for blood and urine tests every 4 weeks during the study. Participants will receive denosumab once every 4 weeks for 48 weeks. The medication is given as a shot injected under the skin using a small needle. Some injections may be performed at home by a caregiver. The caregiver will receive training for this procedure. Participants will undergo many tests that may be repeated throughout the study. They will have a dental exam. They will have tests of their strength and ability to move freely. They will have x-rays and other scans to get pictures of their bones. Participants will be given another medicine that is administered through a needle in the arm over 30 minutes.
Fibrous dysplasia (FD) is a congenital skeletal disorder with multiple complications such as bone pain, fractures, deformities and nerve compression. Few quantitative studies have demonstrated its physical, mental and social negative impacts on patients but none have qualitatively evaluated their global quality of life. Our hypothesis is that a better knowledge of the quality of life of FD patients should allow to target the actions to be implemented to improve patients'care. The main objective of this qualitative research is therefore to investigate the quality of life of FD patients through 2 approaches: a qualitative study with focus groups interviews addressing several themes: self-image, psychological and emotional well-being, difficulties and adaptative strategies; and a quantitative study to measure the impact of FD on quality of life and on olfaction (sometimes affected by nerve compression due to the disease) using standardized questionnaires Short Form 36 (SF36) and Self-reported Mini Olfactory Questionnaire (SELF-MOQ).
This study will address medical devices manufactured by Biomet Microfixation (d.b.a. Zimmer Biomet) designed for fixation and stabilization of the facial and mandibular skeleton.
PTH secretion defects (grouped under the name hypoparathyroidism) are due to abnormalities in the PTH gene, abnormalities in the development of the parathyroid glands which synthesize PTH or abnormalities of the calcium sening receptor whose role is to adapt PTH level to ambient calcium level. In contrast, primary hyperparathyroidism in children is also exceptional; expressed by hypercalcemia, with a renal and bon risk. Pseudo-hypoparathyroidism, now known under the term inactivating PTH / PTHrP Signaling Disorder or iPPSD, are rare pathologies characterized by resistance to the action of PTH sometimes associated with other symptoms, in particular chondrodysplasia. They are linked to a defect in the action of a factor in the signaling pathway of G protein-coupled receptors that activate the production of cyclic AMP (cAMP). IPPSDs are most often due to a molecular defect in the GNAS gene, subject to parental imprint. Fibrous dysplasia / McCune-Albright syndrome is a rare disease caused by somatic "gain-of-function" mutations in the GNAS gene located on chromosome 20q13 leading to activation of the protein Gαs and inappropriate production of intracellular cyclic adenosine monophosphate (cAMP). The clinical phenotype is determined by the location and extent of the tissues affected by this mutation. Autotaxin (ATX) is a protein secreted by different tissues including the liver, fatty tissue, and bone. Today, ATX is described as the major source of LPA in the bloodstream. LPA interacts with one of its receptors on the surface of the cell membrane. Depending on the receptor engaged, one or more Gα subunits (G12 / 13, GQ, Gi / o or Gs) will activate multiple cell signaling pathways. In bone, ATX is expressed by osteoclasts and osteoblasts. Recent laboratory data have shown that PTH stimulates ATX expression in osteoblasts in a dose-dependent manner. The objective of this study is to provide clinical proof of concept that the PTH / Gαs / ATX pathway is truly significant in physiology and pathology, by studying the full spectrum of PTH and GNAS pathologies. If this proof of concept is obtained, therapeutic applications will probably be possible in the long term.
The investigators' objective is to understand the pathogenesis of diabetes mellitus in Fibrous dysplasia/McCune-Albright syndrome (FD/MAS) by: 1) establishing the contributions of insulin resistance versus impaired insulin secretion, 2) investigating presence of excess glucagon signaling by measuring gluconeogenesis and glycogenolysis, and 3) investigating a potential interaction between diabetes and intraductal papillary mucinous neoplasms (IPMNs).
The FD/MAS Patient Registry is an IRB-approved research study that that invites the patients and families to help answer some of the biggest questions about FD/MAS by completing questionnaires about their lives with FD or MAS. Have you enrolled in the FD/MAS Patient Registry yet? Are you up-to-date on your surveys? Take a trip to www.fdmasregistry.org today to learn more about the project, enroll, complete your surveys, or make sure you aren't due to provide more info! The FD/MAS Patient Registry: Your story powers research.