Clinical Trials Logo

Femoral Popliteal Occlusion clinical trials

View clinical trials related to Femoral Popliteal Occlusion.

Filter by:
  • None
  • Page 1

NCT ID: NCT04109287 Withdrawn - Clinical trials for Peripheral Arterial Disease

Blood Flow Changes in Femoral-popliteal Bypass Grafts After Neuromuscular Electrical Stimulation (NMES).

HAEMUS
Start date: February 11, 2020
Phase: N/A
Study type: Interventional

The muscles of the leg require a regular supply of oxygen and nutrients. This is supplied by blood carried by a network of large blood vessels known as arteries. Gradually, these arteries can become narrowed or blocked by a build-up of fatty deposits. This process is known as atherosclerosis and leads to a condition called peripheral arterial disease. The restriction of blood flow caused by the blockage prevents exercising muscles getting enough oxygen and nutrients. In some people, this may lead to a painful ache in their legs when they walk, known as intermittent claudication. If the leg pain is severe, surgeons may decide to bypass this blockage using a vein taken from another part of the body, thereby improving blood flow to the foot. Patients with a narrowing or blockage anywhere in the main artery that runs from the groin to the back of the knee may be treated with a particular type of bypass graft known as a femoral-popliteal bypass graft. However, this graft may collapse if not enough blood is flowing through it. This study is looking to see whether a circulation booster machine, known as the REVITIVE® device, can improve the amount of blood flowing through femoral-popliteal bypass grafts. Patients with these grafts attending their usual clinic appointment in the Vascular Outpatients department at Charing Cross Hospital, London will be asked to have their leg scanned using an ultrasound machine to measure the amount of blood flowing through the graft. They will then use the REVITIVE® device for 30 minutes, before being re-scanned to see whether the device has improved blood flow. Improvements in blood flow may suggest a promising role for the device in keeping these grafts open, therefore helping them last longer and potentially reducing the leg pain associated with peripheral arterial disease.