View clinical trials related to Fanconi Syndrome.
Filter by:Rare Anaemia Disorders (RADs) is a group of rare diseases characterized for presenting anaemia as the main clinical manifestation. Different medical entities classified as RADs by ORPHA classification are most of them chronic life threating disorders with many unmet needs for their proper clinical management creating an impact on European health systems. RADs present diagnostic challenges and their appropriate management requires from specialised multidisciplinary teams in Centers of expertise. Although there are some examples of well-established national registries on RADs in EU, the lack of recommendations for Rare disease registries implementation and the lack of standards for interoperability has led to the fragmentation or unavailability of data on prevalence, survival, main clinical manifestations or treatments in most of the European countries.
The goal of this National Registry is to is to collect information from patients with rare kidney diseases, so that it that can be used for research. The purpose of this research is to: - Develop Clinical Guidelines for specific rare kidney diseases. These are written recommendations on how to diagnose and treat a medical condition. - Audit treatments and outcomes. An audit makes checks to see if what should be done is being done and asks if it could be done better. - Further the development of future treatments. Participants will be invited to participate on clinical trials and other studies. The registry has the capacity to feedback relevant information to patients and in conjunction with Patient Knows Best (Home - Patients Know Best), allows patients to provide information themselves, including their own reported quality of life and outcome measures.
An open-label, phase II study to assess the efficacy and safety of eltrombopag for the treatment of children and adolescents with Fanconi anemia.
This is a minimal risk intervention study where healthy volunteers and individuals with Fanconi anemia will consume a single dose of alcohol and provide primarily non-invasive biological samples at various time points. Biospecimens to be collected include saliva, oral cells collected via mouthwash and cheek brush, and urine. The collection of two blood samples (5 mL each) will be optional and banked for future use.
The primary study objective is to collect biospecimen samples (e.g., blood) from participants diagnosed with Fanconi Anemia. The biospecimens will be used to create a biorepository that can be used to identify disease associated biomarkers and potential targets with immune and multi-omics profiling. The disease sample collection and analysis will be the foundation for an extensive network of biospecimen access and linked datasets for future translational research.
This observational protocol will allow for an independent, prospective evaluation of the improvement in survival of patients with Fanconi disease in hematological deadlock due to the absence of an HLA-identical donor and having received a haploidentical transplant.
Newborn screening (NBS) is a global initiative of systematic testing at birth to identify babies with pre-defined severe but treatable conditions. With a simple blood test, rare genetic conditions can be easily detected, and the early start of transformative treatment will help avoid severe disabilities and increase the quality of life. Baby Detect Project is an innovative NBS program using a panel of target sequencing that aims to identify 126 treatable severe early onset genetic diseases at birth caused by 361 genes. The list of diseases has been established in close collaboration with the Paediatricians of the University Hospital in Liege. The investigators use dedicated dried blood spots collected between the first day and 28 days of life of babies, after a consent sign by parents.
Background: Fanconi anemia (FA) is an inherited disorder. People with FA are more likely to get certain cancers, especially squamous cell carcinoma (SCC). These cancers usually appear first in the mouth, esophagus, and genital and anal areas. Early detection of SCCs may help improve survival rates for people with FA. Objective: This natural history study will regularly screen people with FA for SCC. Eligibility: People aged 12 years and older with FA or a prior cancer diagnosis. Children aged 8 to 11 years with FA may also be eligible. Design: Participants will receive a comprehensive screening for cancer or early signs of cancer. Participants will have a physical exam. They will provide blood and saliva samples. Cells will be collected by rubbing a swab on the inside of the cheeks. A skin sample may be removed from the back, buttocks, or inside of the upper arm. Participants will have pictures taken of their mouth. Any mouth sores will be mapped. Cells will be collected from the sores with a small brush. Specialists will examine the participant s ears, nose, throat, teeth, and skin. Adult participants may have a gastrointestinal exam or pelvic exam. Participants may have an endoscopy. A long tube with a camera and a light will be inserted through the mouth and down into the stomach. Participants may have a liver ultrasound. A wand will be pressed against their belly to get pictures of the organs inside the body. Participants will have screenings every year for up to 10 years. Each visit will last up to 3 days. They will have remote follow-up visits every 6 - 8 months....
The main reason for this research study is to determine whether time-restricted eating will reduce inflammation in the bodies of persons with Fanconi anemia (FA) and whether time-restricted eating will improve function in people with FA and neurological changes. Participants will be asked to eat for only 8 hours out of 24 hours in a day.
The objective of this clinical trial is to develop a cell therapy for Fanconi Anemia which enables enhanced donor hematopoietic and immune reconstitution with decreased toxicity by transplanting depleted stem cells from a donor after using an experimental antibody treatment called JSP-191 as a part of conditioning. This experimental treatment will hopefully cause fewer side effects than chemotherapy (the current standard of care method). Participants will be administered the conditioning regimen, are assessed until they receive the depleted stem cell infusion, and will be followed for up to 2 years after the cell infusion.