Clinical Trials Logo

Clinical Trial Summary

Many people with partial damages in their spinal cord (iSCI) have physical impairments such as muscle paralysis in legs which make standing balance difficult. Poor balance control often leads to falls, injuries, and hospitalization. Therefore, improvement of standing balance is an important therapeutic goal for these individuals. Our team has shown that a therapy called visual feedback training (VFT) can improve standing balance by allowing individuals with iSCI to actively participate and follow visual feedback of their body sway on a screen like a computer game. We have also found that the application of low-energy electrical pulses to weak muscles called functional electrical stimulation (FES) during VFT can enhance the training effects. Recently, transcutaneous spinal cord stimulation (TSCS) has been discussed as a promising technique to further promote the rehabilitation effects after SCI by enhancing the connectivity between the brain and spinal cord and within the spinal pathways. However, to date, the potential of combining the two techniques (TSCS+FES) to improve the standing balance remains unknown. In this study, through the completion of a clinical trial, we will investigate the effects of an intervention that combines lumbar TSCS with FES of ankle muscles during VFT on the functional and neurophysiological outcomes in individuals living with iSCI. Participants will be randomly allocated to receive combined TSCS with FES or FES alone during VFT for 12 training sessions over 4 weeks. We expect that the new therapy would further improve balance and strengthen the neural connections between the brain and muscles. The expected changes in the neural connections will be measured by recording electrical signals from the lower limb muscles following stimulation of the motor region of the brain. Results of this study will be used for a larger-scale study in people with iSCI to improve balance and reduce falls during their daily life activities.


Clinical Trial Description

This is a single-center, randomized controlled trial to test the effects of a novel neuromodulation program on balance performance and neuroplasticity in individuals with iSCI. Participants will be randomly assigned to 2 equal groups labeled as (1) FES with VFT, and (2) combined neuromodulation with VFT. They will complete 8 training sessions over 4 weeks (2 sessions/week). For the FES with VFT group, participants will receive visual feedback regarding their center of pressure location during four games with varying levels of difficulty and FES will be applied bilaterally to SOL and TA via a closed-loop system. Each exercise will be completed 3 times per training session. For the combined neuromodulation with VFT group, the sub-motor threshold, open-loop TSCS will be coupled with closed-loop FES of ankle muscles during VFT. For this purpose, 2 electrical stimulators, one for each leg will stimulate SOL and TA muscles bilaterally while open-loop tonic lumbar TSCS will be applied at an intensity producing paresthesia in most of the lower-limb dermatomes. The range of FES stimulation intensity will vary between the minimal contraction threshold and 80% of the maximal tolerable threshold for each participant during games depending on the instant location of the participant's center of pressure and the location of the desired target during the game. All dependent variables will be assessed prior, immediately after, and 6-weeks after the end of intervention. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05940636
Study type Interventional
Source University Health Network, Toronto
Contact Kei Masani, PhD
Phone 416-597-3422
Email k.masani@utoronto.ca
Status Not yet recruiting
Phase N/A
Start date September 2023
Completion date July 2025

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A