View clinical trials related to Fabry Disease, Cardiac Variant.
Filter by:Better methods for early detection of cardiac involvement in Fabry disease are needed to inform clinical management decisions that can help prevent or slow the progression of cardiac complications. In the Molecular Imaging of Inflammation in Fabry Disease of the Heart study, we will test the use of 68Ga-DOTATATE PET/MRI for identifying myocardial inflammation in patients with Fabry disease.
Patients and healthy controls will undergo cardiopulmonary exercises and testing of the muscles strength to gain additional understanding of exercise intolerance as Fabry disease (FD) manifestation. An additional needle muscle biopsy may be performed. Tissue analysis from this biopsy will include evaluation of the lipidomics profile and mitochondrial function. Results of the tests and any potential exercise intolerance will be compared against healthy, age-, sex- and BMI-matched volunteers. The hypothesis is that patients with FD will have reduced exercise capacity due to changes in skeletal and cardiac muscle energy metabolism.
Long-term follow-up of subjects who received ST-920 in a previous trial (ST-920-201) and completed at least 52 weeks post-infusion follow-up in their primary protocol. Enrolled subjects will be followed for a total of up to 5 years following ST-920 infusion.
This study aims to evaluate the prevalence of Fabry Disease (FD) among a cohort of high risk patients with left ventricular hypertrophy (LVH) presenting at the University Hospital Würzburg over the last 20 years. Fabry disease is a rare disease that is known to be consistently underdiagnosed due to its largely variable symptoms. Considering that an early Fabry diagnosis is crucial for maximum benefit from therapies available, screening for Fabry patients can contribute to preventing development and worsening of symptoms in Fabry patients with LVH. In addition, a positive diagnosis in a family member opens the possibility to diagnose further family members in an earlier stage of the disease, therefore allowing treatment of symptoms and organ manifestations before they become irreversible.
This study evaluates predictors for the incidence of arrhythmias and sudden cardiac death as well as terminal heart failure in patients with Fabry disease.
Fabry disease is caused by the deficiency or absence of alpha-galactosidase A (α-Gal A) activity, leading to progressive deposition of glycosphingolipids, mainly globotriaosylceramide (Gb3), in the lysosomes of multiple tissues and organs. In Taiwan, Dr. Niu first revealed a surprisingly high incidence (approximately one in 1,600 males) of a cardiac variant GLA splicing mutation, IVS4+919G>A, in newborn screening. Patients who carried the IVS4 + 919G > A mutation and were older than 40 years had a higher prevalence of hypertrophic cardiomyopathy. Endocardial biopsy of these patients with hypertrophic cardiomyopathy showed significant Gb3 accumulation in the cardiomyocytes. Although the hotspot IVS4+919G>A mutation is now being observed with greater frequency, understanding of the natural course of cardiac variant Fabry disease with this specific mutation remains limited. Therefore, our study would like to conduct a study to approach the natural history among patients with Chinese hotspot late-onset Fabry mutation IVS4+919G>A through family pedigree analysis.
The cardiac variant of the Fabry disease is a rare cardiomyopathy affecting 1/50000 individuals in general population. It is generally diagnosed in advanced stages of the disease, because it presents clinical features very similar to the hypertrophic cardiomyopathy ones, making difficult the correct diagnosis. In Fabry disease there is a remodeling process of the myocardial interstitium and apoptosis of myocytes which leads to fibrosis development and later systolic dysfunction. The investigators propose to evaluate the utility of several biomarkers in the diagnosis of this cardiomyopathy, to facilitate the early diagnosis, which is clue to establish early enzyme replacement therapy or intensify the patients' follow up. In order to achieve this objective, the investigators will analyze markers of endothelial dysfunction, fibrosis and apoptosis in peripheral blood samples of patients carrying the mutation but without clinical manifestations and the investigators will compare their levels with dose obtained from two different control groups: diagnosed patients presenting clinical manifestations or index cases and healthy controls without carrying the mutation.