Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03279380
Other study ID # UP-FVZ-GeneExerciseInteraction
Secondary ID
Status Recruiting
Phase N/A
First received September 4, 2017
Last updated September 11, 2017
Start date October 1, 2017
Est. completion date June 30, 2018

Study information

Verified date September 2017
Source University of Primorska
Contact Felicita Urzi, MSc
Phone 0038631801692
Email felicita.urzi@upr.si
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Athlete status is a heritable trait that could be explained with a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport.

The first aim of the study is to determine the genetic profile of Slovenian athletes. The associations of 30 common gene polymorphisms with aerobic and anaerobic athlete status will be investigated as a single and polygenic profile.

The second aim is to investigate the impact of the genetic variants contributing to different acute response to low vs. high intensity exercise. Physiological and biochemical measurements will be carried out. Variability in physiological adaptation in response to exercise will provides an opportunity to study the relationship between the molecular response to exercise and the extent of physiological changes in athletes. Currently, it is not yet clear whether different genetic variant associated with exercise responses remains uniform, with different exercise intensities, structure and duration of exercise.


Description:

Slovenian athletes (n = 300; 18-40 years) of regional or national competitive standard will be recruited from the endurance oriented and power oriented sports disciplines. Healthy unrelated individuals without any competitive sport experience will serve as controls (n= 200; 18-40 years). After completing the questionnaire (for athletes: covering demographics, geographic ancestry, sports classification, discipline, and history, as well as frequency and volume of training; for control group: demographics, geographic ancestry habits of daily living), genotyping analyses will be performed. The athletes and controls will be genotyped for 30 candidate gene polymorphisms considered likely to influence endurance performance. Molecular genetic analysis will be performed with DNA samples obtained from the capillary whole blood. Genotyping for 30 gene polymorphisms will be performed by Real-Time PCR on LightCycler® 96 Instrument (Roche) and KASP (Kompetitive Allele Specific PCR) genotyping technology.

In addition, 40 athletes with endurance genetic variant will be selected to participate in the acute exercise study. In order to investigate the acute effects of low and high intensity exercise the concentration of circulating myokines will be measured.

Three distinct experimental sessions scheduled 96 h apart, at the same time of the day and in random order will be applied to this sub-group of athletes.

In the first session, aerobic power will be determined using an incremental test to exhaustion on a cycling ergometer (Velodyn, Racermate ™, USA). Oxygen consumption (VO2) will be determined breath by breath using a Quark gas analysis system (Quark, Cosmed, Rim, Italy). The interventions during the other two experimental session will consist of cycling exercise with continuous 60 min cycling at 50% PPO (low intensity), and 8 x 5 min at 80% PPO (between intervals 1.5 min at 75 W) exercise (high intensity).

The participants will be asked to follow the prescribed diet regime, to avoid the intake of alcohol and to not perform any physical activity in the 24 hours prior to the experimental sessions. The experimental sessions will be performed from 8 to 11 am, in random order and scheduled 96 h apart.

Before each intervention, the individuals will remain seated in the laboratory for a period of 20 minutes with a room temperature between 22-24ºC. During this period, resting blood samples will be collected. Two more samples of blood will be collected, immediately post-exercise intervention and 2h post-exercise. Venous blood will be collected into EDTA tubes, centrifuge at 2500-3000g for 20 minutes, and a separate plasma will be stored at -80 ° C for the further analysis.

The quantification of biomarkers will be done using the MAGPIX® system, magnetic bead-based multi-analyte panels and MILLIPLEX® Analyst 5.1 software (MAGPIX®, Merck Millipore). For the myokine analysis a commercial kit HMYOMAG-56K will be used.

Genotype distribution and allele frequencies between each of the two groups of athletes (endurance and power) and controls will be compared using χ2 tests. Endurance genotype score (EGS) will be construct. First, each genotype will be scored within each polymorphism. Thus, a genotype score (GS) of 2, 1 and 0 to each individual genotype theoretically associated to highest, medium or lowest potential of endurance phenotypes will be assigned. Second, the GS of each single genotype will be summed ∑(i=1)^nSNPi. Third, the EGS will be transformed to a 0-100 scale for easier interpretation, as follows: EGS=(100/2n)∑_(i=1)^nSNPi. An EGS of 100 represents an 'optimal' polygenic profile for endurance athlete—that is, that all GS are 2. In contrast, an EGS of 0 represents the 'worst' possible profile for endurance athlete, that is, all GS are 0. The mean the EGS obtained in the three study groups will be calculated. The EGS of endurance, power athletes and non-athletes (controls) will be compared with one-way analysis of variance (ANOVA), and Tukey post hoc test will be used for between-group comparisons. We will also performed ANOVA to compare the EGS between elite- and national-level athletes within each group of endurance and power athletes. Data normality was verified through an exploratory analysis using the Shapiro-Wilk test. Two-way mixed ANOVA will be applied to check the main interaction effects of time by exercise session (time*session) and of time (time) on myokine plasma concentration. For statistically significant effects, a post-hoc Tukey test will be adopted for multiple comparisons. All values will be expressed as mean and standard deviation (SD). P values of <0.05 will be considered statistically significant. Bonferroni's correction for multiple testing will be performed by multiplying the P value with the number of tests where appropriate. Statistical analyses will be carried out using the SPSS program, version 21 (Chicago, IL).


Recruitment information / eligibility

Status Recruiting
Enrollment 500
Est. completion date June 30, 2018
Est. primary completion date December 31, 2017
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 40 Years
Eligibility Inclusion Criteria:

- Slovenian residents

- Healthy individuals

- endurance athlete (categorization: world, international, national or youth class)

- power athlete (categorization: world, international, national or youth class)

Exclusion Criteria:

- corticosteroids

- hormone therapy

Study Design


Related Conditions & MeSH terms


Intervention

Other:
SNP
Screening 150 endurance, 150 power athletes, and 200 healthy control individuals for genetic variant associated to sport performance.
High Intensity Interval Training (HIIT)
The subgroup (n = 40) of the athletes will participate in the acute exercises (HIIT Training). In order to investigate the acute effects of the exercise the concentration of circulating myokines will be measured (before, post-exercise and 2 h post-exercise). All participants will visit the laboratory at least three times, scheduled 96 h apart. Exercise will be carried out on the cycling ergometer with simultaneous monitoring of physiological responses. Participants will be asked to follow the prescribed diet regime and not to perform any physical activities / trainings the day before measurements. Baseline measurements will include the V?o 2 peak test. Then the participants will be randomly divided into two groups. The specific acute exercises will be accomplish in the next two visits.
Low Intensity Continuous Training
The subgroup (n = 40) of the athletes will participate in the acute exercises (LIT Continuous Training). In order to investigate the acute effects of the exercise the concentration of circulating myokines will be measured (before, post-exercise and 2 h post-exercise). All participants will visit the laboratory three times, scheduled 96 h apart. Exercise will be carried out on the cycling ergometer with simultaneous monitoring of physiological responses. Participants will be asked to follow the prescribed diet regime and not to perform any physical activities / trainings the day before measurements. Baseline measurements will include the V?o 2 peak test. Then the participants will be randomly divided into two groups. The specific acute exercises will be accomplish in the next two visits.

Locations

Country Name City State
Slovenia University of Primorska, Faculty Health Sciences AND Faculty of Mathematics, Natural Sciences and Information Technologies Koper

Sponsors (2)

Lead Sponsor Collaborator
University of Primorska S2P, Science to Practice, Ltd.

Country where clinical trial is conducted

Slovenia, 

References & Publications (14)

Ahmetov II, Fedotovskaya ON. Current Progress in Sports Genomics. Adv Clin Chem. 2015;70:247-314. doi: 10.1016/bs.acc.2015.03.003. Epub 2015 Apr 11. Review. — View Citation

Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, Mozhayskaya IA, Vinogradova OL, Astratenkova IV, Montgomery HE, Rogozkin VA. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet. 2009 Dec;126(6):751-61. doi: 10.1007/s00439-009-0728-4. — View Citation

Booth FW, Neufer PD (2012) Exercise genomics and proteomics. In: Farrrell PA, Joyner MJ, Caiozzo VJ, editors. ACSM's Advanced Exercise Physiology. Baltimore, MD: Lippincott Williams & Wilkins. pp. 669-698

Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, Rao DC, Rankinen T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011 May;110(5):1160-70. doi: 10.1152/japplphysiol.00973.2010. Epub 2010 Dec 23. — View Citation

Bouchard C. Genomic predictors of trainability. Exp Physiol. 2012 Mar;97(3):347-52. doi: 10.1113/expphysiol.2011.058735. Epub 2011 Oct 3. — View Citation

De Moor MH, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, De Geus EJ. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet. 2007 Dec;10(6):812-20. doi: 10.1375/twin.10.6.812. — View Citation

Egan B, O'Connor PL, Zierath JR, O'Gorman DJ. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS One. 2013 Sep 12;8(9):e74098. doi: 10.1371/journal.pone.0074098. eCollection 2013. — View Citation

Eynon N, Ruiz JR, Meckel Y, Morán M, Lucia A. Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion. 2011 Jan;11(1):64-9. doi: 10.1016/j.mito.2010.07.004. Epub 2010 Jul 18. — View Citation

Pedersen BK. Muscles and their myokines. J Exp Biol. 2011 Jan 15;214(Pt 2):337-46. doi: 10.1242/jeb.048074. — View Citation

Pitsiladis YP, Tanaka M, Eynon N, Bouchard C, North KN, Williams AG, Collins M, Moran CN, Britton SL, Fuku N, Ashley EA, Klissouras V, Lucia A, Ahmetov II, de Geus E, Alsayrafi M; Athlome Project Consortium. Athlome Project Consortium: a concerted effort to discover genomic and other "omic" markers of athletic performance. Physiol Genomics. 2016 Mar;48(3):183-90. doi: 10.1152/physiolgenomics.00105.2015. Epub 2015 Dec 29. Review. — View Citation

Rankinen T, Fuku N, Wolfarth B, Wang G, Sarzynski MA, Alexeev DG, Ahmetov II, Boulay MR, Cieszczyk P, Eynon N, Filipenko ML, Garton FC, Generozov EV, Govorun VM, Houweling PJ, Kawahara T, Kostryukova ES, Kulemin NA, Larin AK, Maciejewska-Karlowska A, Miyachi M, Muniesa CA, Murakami H, Ospanova EA, Padmanabhan S, Pavlenko AV, Pyankova ON, Santiago C, Sawczuk M, Scott RA, Uyba VV, Yvert T, Perusse L, Ghosh S, Rauramaa R, North KN, Lucia A, Pitsiladis Y, Bouchard C. No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS One. 2016 Jan 29;11(1):e0147330. doi: 10.1371/journal.pone.0147330. eCollection 2016. — View Citation

Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerström T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol (1985). 2010 Jun;108(6):1487-96. doi: 10.1152/japplphysiol.01295.2009. Epub 2010 Feb 4. — View Citation

Trayhurn P, Drevon CA, Eckel J. Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem. 2011 May;117(2):47-56. doi: 10.3109/13813455.2010.535835. Epub 2010 Dec 15. Review. — View Citation

Yang Y, Creer A, Jemiolo B, Trappe S. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol (1985). 2005 May;98(5):1745-52. Epub 2004 Dec 23. — View Citation

* Note: There are 14 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Genetic markers associated with endurance performance Comparing the frequencies of the alleles of the candidate genes between endurance athletes and opposite cohorts (controls, power athletes). 12 weeks
Secondary Concentration of circulating myokines The effect of exercise on expression of myokine between different exercise (high and low intensity exercise). 12 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT05156424 - A Comparison of Aerobic and Resistance Exercise to Counteract Treatment Side Effects in Men With Prostate Cancer Phase 1/Phase 2
Completed NCT05108181 - Muscle Typology and Strength Training Adaptations N/A
Recruiting NCT05052918 - The Effect of Exercise and Metformin on Carotid Intima-media Thickness in Patients With Prediabetes N/A
Completed NCT04508270 - Significance of Early Mobilization After VATS-L
Recruiting NCT04994340 - Physical Activity Observatory of Castilla-La Mancha
Completed NCT04815980 - Impact of Pilates on Running Mechanics N/A
Completed NCT05189795 - The Construction of Physical ACtivity Enhancement Scheme (PACES) in Hemodialysis Patients
Completed NCT03683758 - Effects of the FIFA11+ Warm-up Program on Speed, Agility, and Vertical Jump Performance in Adult Female Amateur Soccer Players N/A
Completed NCT05538520 - Effects of Pilates Stretching on Flexibility, Strength, Power and Muscular Endurance N/A
Completed NCT06315036 - Effects of Developmental Gymnastics on Preschoolers' Motor Skills N/A
Completed NCT03171064 - Exercise as a Supportive Measure for Patients Undergoing Checkpoint-inhibitor Treatment Phase 2
Recruiting NCT05496751 - Response Variability to Exercise N/A
Not yet recruiting NCT05029804 - Effect of Walking Exercise Training on Adherence to Disease Management and Metabolic Control in Diabetes N/A
Completed NCT04207359 - Effects of Creatine Supplementation in Breast Cancer Survivors N/A
Completed NCT03832205 - Validation of Respiratory Rate and Heart Rate Measurements by Capaciflectors Placed in Four Locations on the Chest
Completed NCT04099654 - The Effect of Core Stabilization Exercise Program in Obese Subjects Awaiting Bariatric Surgery N/A
Completed NCT03477188 - The Effects of Somatosensory and Vestibular Rehabilitation Additional Conventional Therapy on Balance in Patients With Acute Stroke. N/A
Completed NCT03297567 - Physical Therapy Guidelines For Hospitalized Elderly N/A
Recruiting NCT05956327 - Insight Into Hippocampal Neuroplasticity in Schizophrenia by Investigating Molecular Pathways During Physical Training N/A
Recruiting NCT06018311 - Exercising Together for Hispanic Prostate Cancer Survivor-Caregiver Dyads N/A