Clinical Trials Logo

Clinical Trial Summary

To examine existence of connection between fat utilization points, both maximal and minimal with individual metabolic thresholds in different subjects. As a consequence, this innovative approach could offer a supplementary method for both aerobic and anaerobic thresholds detection as well as useful and practical exercise intensity selection marker.


Clinical Trial Description

This study aims to examine the existence of connection between metabolic thresholds and fat oxidation points in diverse group of subjects. From the physiological perspective, during exercise with increasing intensity, three phases of the body's energy utilization and two threshold points can be defined. These threshold points have been named metabolic thresholds and as such are considered as indicators of exercise capacities. Several authors have suggested, that the first threshold should be called the 'aerobic threshold' (AeT) and the second the 'anaerobic threshold' (AnT). The energy contribution from fat oxidation increases during low-to-moderate exercise intensities and then markedly declines when the intensity becomes high, at which point carbohydrates (CHO) remain the dominant energy substrate. A term used to describe exercise intensity where fat oxidation reaches optimum, is maximal fat oxidation point (FATmax) whereas exercise intensity matching the negligible fat oxidation is labelled FATmin. During physical activity, due to limited availability of CHO, subjects are more dependent on energy originating from fat when aiming to optimize endurance performance, body composition, optimize weight control and the metabolic rate. Exercise at the intensity eliciting FATmax revealed best results in treatment and prevention of obesity-associated conditions, cardio-vascular and pulmonary diseases by means of increase in maximal fat oxidation rates (MFO), insulin sensitivity, improvements in ventilator efficiency and cardiac output, demonstrating a significant role in the treatment of these impairments. As a follow-up, studies demonstrated how the lowest beneficial effect was observed when exercise was performed above intensity matching negligible fat oxidation rate (FATmin), contributing to diminished protection of exercise therapy. In consequence, increased cardio-metabolic demands of exercise performed above FATmin also have a higher impact on mortality rates in comparison to low-moderate aerobic exercise. Therefore, choosing appropriate exercise intensity may play a decisive role in decreasing risk factors accompanying obesity-associated conditions. Investigators aim to determine metabolic thresholds and fat oxidation points by using non-invasive breath-by-breath gas analysis during either treadmill or cycle ergometry. Metabolic thresholds will be detected by using gas analysis, via ventilatory parameters. Fat oxidation points will be determined using indirect calorimetry. Participants will perform graded ergometry test (2min stages and 1km/h or 50 W load increase), on either cycle or treadmill ergometer, till exhaustion to determine maximal oxygen uptake (VO2max), with gases being collected at the mouth level by using spiroergometry. The strength of the relationship between intensities matching VO2 at AeT and VO2 at FATmax will be assessed using the Pearson product moment (r) correlation coefficient with same being done for AnT and FATmin correlation. A coefficient of determination (R2) will be used to detect the proportion of existing variance. A paired t-test will be used to asses' differences between measured variables. Associated heart rate at the AeT/FATmax and AnT/FATmin will be used as training mean to identify proper training intensity. The time frame of the study is about 3 years, depending on the availability of the subjects. Planed study begin is early 2016. Participants will be every day clients of the Institution and will be recruited on a voluntary basis as they arrive to the testing facilities through this 3 years period.Through this 3 years period, statistical analysis of the collected data for each group of subjects will be performed and observations will be published. Up to 7 publications are expected to result from this research. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03789045
Study type Observational
Source Sport Studio Banja Luka
Contact
Status Completed
Phase
Start date May 1, 2016
Completion date December 30, 2022

See also
  Status Clinical Trial Phase
Completed NCT01906333 - Elevated FFA and Skeletal Muscle Lipid Content N/A
Recruiting NCT05269615 - Exercise-induced Erythropoiesis: the Mechanistic of Angiotensin II Phase 4
Completed NCT03569566 - Performance Determinants Factors in Elite Endurance Athletes.
Terminated NCT03794050 - Comparing Acute Aerobic and Resistance Exercise N/A
Recruiting NCT04854356 - Blood Flow Restriction During High-intensity Interval Exercise N/A