Clinical Trials Logo

Clinical Trial Summary

The surgical stress of an esophagectomy causes a detrimental impact on the physiological response of the body. In this perspective, one could question whether the current feeding regimens of starting early nutritional support at postoperative day (POD) 1 have a similar negative impact on the muscle mass as documented in critically ill patients. This study will introduce relative starvation in the early days following esophagectomy compared to the current regimen of early enteral nutritional support. The research team aims to investigate whether the negative impact on muscle mass and muscle function might be reduced, which should result in enhanced postoperative recovery. The final result of the study will be a well-documented and scientifically substantiated nutritional regimen for patients who underwent an esophagectomy for cancer.


Clinical Trial Description

Patients suffering from oesophageal cancer are known to suffer from important weight loss preoperatively, due to dysphagia attributed to the growing tumour. Postoperatively, the challenge of maintaining weight is even more important given the new way of eating through the gastric conduit that replaces the oesophagus. They often also need to tackle dysphagia caused by an anastomotic stricture and overcome the physiological stress of the operation. As a consequence, almost all patients are confronted with postoperative weight loss. Obviously, patients with a low preoperative weight do not have a lot of reserve and are thus even more at risk of becoming anorectic in the postoperative setting. This postoperative weight loss has a direct relationship with impaired survival. Therefore, reversing or at least stabilizing the postoperative weight loss might improve survival. The link between weight loss and impaired survival is found in the concept of sarcopenia, the breakdown of muscle fibers. Indeed, by losing muscle strength, patients become too weak for general tasks like bathing, putting clothes on or shopping. In a more pronounced stage, loss of muscle mass is responsible for impaired recovery and eg. the inability to fight against respiratory infections due to lack of cough power. A logical reaction would therefore be to maximize caloric intake in the peri- and postoperative setting. One could therefore implement extra caloric intake as early as possible in the postoperative track in order to improve recovery. This has been up to now been advocated by scientific organisations like ESPEN (European Society for Clinical Nutrition and Metabolism) by spreading their guidelines on postoperative nutrition. In contrast, within the field of intensive care and nutrition, discussion has risen about timing of feeding. The focus here shifted in the direction of postponing nutrition to a later stage in the recovery of a sick patient, rather than initiate feeding too soon. Through fundamental research, the concept of impaired autophagy at muscular level in case of early feeding was put forward as underlying mechanism. Muscle cells get swollen and their interlinking structure gets disturbed, resulting in decreased function. The muscle loss itself is triggered by the initial inflammatory storm that these patients go through when their lives are at stake at admission on the ICU. Early energy suppletion seems to aggravate this process even more. This cascade negatively influences recovery. This finding led in our own institution to postpone feeding of patients at the ICU until one week after admission, in order to minimize muscle tissue loss. The investigators consider the experience in ICU patients as a proof of concept of the postoperative aggravation of sarcopenia in esophageal cancer patients. As patients following esophagectomy are also confronted with a similar catecholamin storm and insulin resistance, they could also be considered to suffer from similar processes that inhibit recovery as patients at the ICU. The main research hypothesis is therefore that relative energy restriction following surgery would result in better qualitative muscle tissue, in comparison to patients that receive early enteral nutritional support. By doing so, the researchers assume to minimize autophagy at muscular level, resulting in better function and ultimately also in better postoperative recovery. Ultimately, this limitation of muscle loss most likely will have a beneficial effect on survival. The primary outcome parameter, improvement of muscle function, will be assessed by means of a 6 minute walk test. Apart from this test, several side measurements will be performed - a nutrition diary, activity assessment by means of a MoveMonitor sensor, bio-impedance measurement, quantitive evaluation of muscle mass by CT, qualitative evaluation of muscle quality by muscle biopsy, quality-of-life-questionnaires and continous monitoring of glucose levels during enteral feeding will give the researchers more insight in the underliying mechanisms. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03676478
Study type Interventional
Source University Hospital, Gasthuisberg
Contact Hans GL Van Veer, MD
Phone +3216341213
Email hans.vanveer@uzleuven.be
Status Recruiting
Phase N/A
Start date March 25, 2019
Completion date March 1, 2025

See also
  Status Clinical Trial Phase
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Terminated NCT01624090 - Mithramycin for Lung, Esophagus, and Other Chest Cancers Phase 2
Recruiting NCT05787522 - Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk
Not yet recruiting NCT05542680 - Study on the Design and Application of Special Semi Recumbent Cushion for Postoperative Patients With Esophageal Cancer N/A
Completed NCT03384511 - The Use of 18F-ALF-NOTA-PRGD2 PET/CT Scan to Predict the Efficacy and Adverse Events of Apatinib in Malignancies. Phase 4
Completed NCT00003864 - Docetaxel Plus Carboplatin in Treating Patients With Advanced Cancer of the Esophagus Phase 2
Recruiting NCT05491616 - Nivolumab During Active Surveillance After Neoadjuvant Chemoradiation for Esophageal Cancer: SANO-3 Study Phase 2
Active, not recruiting NCT04383210 - Study of Seribantumab in Adult Patients With NRG1 Gene Fusion Positive Advanced Solid Tumors Phase 2
Completed NCT00199849 - NY-ESO-1 Plasmid DNA (pPJV7611) Cancer Vaccine Phase 1
Completed NCT03756597 - PAN-study: Pan-Cancer Early Detection Study (PAN)
Completed NCT00400114 - Sutent Following Chemotherapy, Radiation and Surgery For Resectable Esophageal Cancer Phase 2
Completed NCT03652077 - A Safety and Tolerability Study of INCAGN02390 in Select Advanced Malignancies Phase 1
Recruiting NCT04615806 - The Value of Lymph Node Dissection of Indocyanine Green-guided Near-infrared Fluorescent Imaging in Esophagectomy N/A
Active, not recruiting NCT04566367 - Blue Laser Imaging (BLI) for Detection of Secondary Head and Neck Cancer N/A
Active, not recruiting NCT03962179 - Feasibility and Efficacy of a Combination of a SEMS and Vacuum Wound Treatment (VACStent) N/A
Terminated NCT01446874 - Prevention of Post-operative Pneumonia (POPP) Phase 2/Phase 3
Completed NCT03468634 - Raman Probe for In-vivo Diagnostics (During Oesophageal) Endoscopy N/A
Active, not recruiting NCT02869217 - Study of TBI-1301 (NY-ESO-1 Specific TCR Gene Transduced Autologous T Lymphocytes) in Patients With Solid Tumors Phase 1
Completed NCT02810652 - Perioperative Geriatrics Intervention for Older Cancer Patients Undergoing Surgical Resection N/A
Recruiting NCT01404156 - Preoperative Chemotherapy vs. Chemoradiation in Esophageal / GEJ Adenocarcinoma Phase 2/Phase 3