Clinical Trials Logo

Clinical Trial Summary

Sleep slow waves (SSW) and the pathophysiological mechanisms of spike generation in patients with epilepsy are tightly linked. SSW are cortically generated oscillations (~1 Hz) alternating between a hyperpolarized down-state (neuronal silence) and a depolarized up-state (neuronal firing). It has been shown experimentally that with increasing synchrony of slow neuronal oscillations, spike wave occurrence is facilitated. Auditory stimulation applied in correspondence to the SSW "up-phase" may increase the amplitude of the following SSW. Contrarywise, tones applied at the SSW "down-phase" may have a disruptive effect on SSW. Participants: Patients with epilepsy with epileptic discharges in their sleep EEG, as well as healthy controls Objective: Characterizing the effects of down-phase-targeted auditory stimulation on behavior and sleep EEG characteristics and determine whether the changes in sleep EEG characteristics are associated with the changes in behavior and wake EEG characteristics.


Clinical Trial Description

The investigators aim to evaluate the effect of closed-loop auditory stimulation during sleep in healthy children, adolescents and adults, as well children, adolescents and adults with epilepsy. During closed-loop auditory stimulation, a brief, quiet, non-arousing auditory stimuli, e.g. brief bursts of pink noise (50ms), are presented at specific moments during sleep. This procedure allows to noninvasively interact with endogenous brain activity and to influence sleep-dependent neuroplasticity. Sleep slow waves (SSW) and the pathophysiological mechanisms of spike generation in patients with epilepsy are tightly linked. SSW are cortically generated oscillations (~1 Hz) alternating between a hyperpolarized down-state (neuronal silence) and a depolarized up-state (neuronal firing). It has been shown experimentally that with increasing synchrony of slow neuronal oscillations, spike wave occurrence is facilitated. Auditory stimulation applied in correspondence to the SSW "up-phase" may increase the amplitude of the following SSW. Contrarywise, tones applied at the SSW "down-phase" may have a disruptive effect on SSW. In a control week participants' usual sleeping behavior will be assessed using activity meters and sleep diaries. During the lab visits, sleep and wake brain activity will be measured using EEG at the sleep laboratory. For sleep recordings, other standard polysomnographic (PSG) measures will be recorded as well. Within the study, further measures include a structural MRI, IQ, as well as motor, cognitive, and vigilance tests. Participants' well-being and tolerance to the intervention will be assessed with questionnaires. Thus, the investigators will have the following source data: PSG data, computer based test results (cognitive functioning, vigilance, memory and motor tests), IQ and questionnaire data, actigraphy data, and, depending on the participant and the availability of the MRI scanner, structural MRI data. The sample size of the study is based on previous publications showing a significant effect of closed-loop auditory stimulation on NREM sleep EEG markers and declarative memory consolidation (Ngo et al., 2013). By including 11 participants they could demonstrate significant results both for the behavioral and electrophysiological data. Therefore, the investigators assume that it would be statistically meaningful to recruit at least 20 subjects per age group. As the goal is to record 160 complete datasets, all these datasets will be used for the analysis. Incomplete datasets due to early withdrawal can be included partially for analyses in which only the available measures are included. For any given analysis, datasets missing the relevant data will be excluded. The investigators will ensure that no analysis is based on less than 90% of the pursued sample size, meaning that at least 18 datasets per age and health group will enter all analyses (healthy participants or patients with epilepsy of a particular age group). In other words, no more than two participants would be excluded between outliers and missing data. Should this be exceeded, the investigators will compensate by recruiting additional participants The data quality will be checked immediately after each experimental session to confirm the correct timing of presented sounds, as well as to assess the effect of closed-loop auditory stimulation on sleep EEG markers. The experiment will be continued if there will be a significant change in slow-wave activity in the first 10 participants (p < 0.05, paired-samples t-test) associated with closed-loop auditory stimulation application. The final analysis described in the section below will be performed after all the data is collected. All study data will be archived at University Children's Hospital for a minimum of 10 years after study termination or premature termination of the clinical trial. The anonymized EEGs are stored on the server of the EEG division of the University Children's Hospital. Data generation, transmission, archiving and analysis strictly follows the current Swiss legal requirements for data protection. Personal identifiable information will be handled with complete confidentiality and will only be accessible to authorized personnel who require such information to fulfill their duties within the scope of the research project. The documents of the telephone interview are kept enclosed. On the project specific documents, participants are only identified by a unique participant number. Participant IDs and corresponding names will be saved in an encrypted participant identification list, accessible only to the Principal Investigator and authorized members of the team. The Sponsor-Investigator is implementing and maintaining quality assurance and quality control systems with written SOPs and Working Instructions to ensure that trials are conducted and data are generated, documented (record), and reported in compliance with the protocol, GCP, and applicable regulatory requirement(s). Monitoring and audits will be conducted during the course of the study for quality assurance purposes. The day-to-day management of the study will be coordinated through the selected PhD student supervised by the postdoctoral researcher. The investigator will allow the persons being responsible for the audit or the inspection to have access to the source data/documents and to answer any questions arising. All involved parties will keep the patient data strictly confidential. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04716673
Study type Interventional
Source University Children's Hospital, Zurich
Contact Sven Leach, M. Sc.
Phone +41 44 266 3217
Email sven.leach@kispi.uzh.ch
Status Recruiting
Phase N/A
Start date July 29, 2020
Completion date December 2025

See also
  Status Clinical Trial Phase
Completed NCT04595513 - Stopping TSC Onset and Progression 2: Epilepsy Prevention in TSC Infants Phase 1/Phase 2
Completed NCT02909387 - Adapting Project UPLIFT for Blacks in Georgia N/A
Completed NCT05552924 - Self Acupressure on Fatigue and Sleep Quality in Epilepsy Patients N/A
Terminated NCT01668654 - Long-term, Open-label Safety Extension Study of Retigabine/Ezogabine in Pediatric Subjects (>= 12 Years Old) With POS or LGS Phase 3
Not yet recruiting NCT05068323 - Impact of Interictal Epileptiform Activity on Some Cognitive Domains in Newly Diagnosed Epileptic Patients N/A
Completed NCT03994718 - Creative Arts II Study N/A
Recruiting NCT04076449 - Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy
Completed NCT00782249 - Trial Comparing Different Stimulation Paradigms in Patients Treated With Vagus Nerve Stimulation for Refractory Epilepsy N/A
Completed NCT03683381 - App-based Intervention for Treating Insomnia Among Patients With Epilepsy N/A
Recruiting NCT05101161 - Neurofeedback Using Implanted Deep Brain Stimulation Electrodes N/A
Active, not recruiting NCT06034353 - Impact of Pharmacist-led Cognitive Behavioral Intervention on Adherence and Quality of Life of Epileptic Patients N/A
Recruiting NCT05769933 - Bridging Gaps in the Neuroimaging Puzzle: New Ways to Image Brain Anatomy and Function in Health and Disease Using Electroencephalography and 7 Tesla Magnetic Resonance Imaging
Not yet recruiting NCT06408428 - Glioma Intraoperative MicroElectroCorticoGraphy N/A
Not yet recruiting NCT05559060 - Comorbidities of Epilepsy(Cognitive and Psychiatric Dysfunction)
Completed NCT02952456 - Phenomenological Approach of Epilepsy in Patients With Epilepsy
Completed NCT02977208 - Impact of Polymorphisms of OCT2 and OCTN1 on the Kinetic Disposition of Gabapentin in Patients Undergoing Chronic Use Phase 4
Completed NCT02646631 - Behavioral and Educational Tools to Improve Epilepsy Care N/A
Recruiting NCT02539134 - TAK-935 Multiple Rising Dose Study in Healthy Participants Phase 1
Terminated NCT02757547 - Transcranial Magnetic Stimulation for Epilepsy N/A
Completed NCT02491073 - Study to Evaluate Serum Free Thyroxine (FT4) and Free Triiodothyronine (FT3) Measurements for Subjects Treated With Eslicarbazeine Acetate (ESL) N/A