Clinical Trials Logo

Clinical Trial Summary

The goal is to provide a novel therapeutic option for temporal lobe epilepsy patients when focal impaired awareness seizures cannot be stopped by medications, surgical or laser ablation, or by neurostimulation. The goal is restore consciousness when seizures cannot be stopped. If successful, addition of bilateral thalamic stimulation to existing responsive neurostimulation to rescue consciousness would greatly alter clinical practice and patient outcomes. Importantly, previous approaches aim to stop seizures, whereas this study aims to use thalamic stimulation to improve a major negative consequence when seizures cannot be stopped. The potential impact extends beyond temporal lobe epilepsy to other seizure types, and may also extend more broadly to inform treatment of other brain disorders associated with impaired consciousness and cognition.


Clinical Trial Description

Impaired consciousness during seizures has a major negative impact on quality of life for people with epilepsy. Consequences include risk of motor vehicle accidents, drowning, poor work and school performance, and social stigmatization. Impaired ictal/postictal arousal may also compromise breathing leading to sudden unexpected death in epilepsy. Although the primary goal of epilepsy care is to stop seizures, restoring conscious awareness in patients whose seizures cannot be stopped (by medications, surgery or deep brain stimulation) could significantly improve outcome. Disorders of consciousness other than epilepsy have long been known to arise from dysfunction of subcortical-cortical arousal circuits. Deep brain stimulation (DBS) of the thalamic intralaminar central lateral nuclei (CL) is a promising approach to restore conscious arousal currently being trialed for chronic disorders of consciousness. Recent neuroimaging and EEG studies have shown that transient impaired consciousness in temporal lobe epilepsy (TLE) seizures also depends on subcortical-cortical arousal including thalamic CL. Translational studies from this research group further demonstrate depressed CL function in limbic seizures, and most importantly that thalamic CL stimulation has the potential to restore physiological and behavioral arousal in the ictal and postictal periods. DBS treatment of epilepsy has advanced rapidly with FDA approval of responsive neurostimulation (RNS, NeuroPace) and thalamic anterior nucleus stimulation (Medtronic). Investigational devices such as the Medtronic Summit RC+S provide a unique opportunity for responsive stimulation of up to four separate brain regions, enabling conventional sites such as hippocampus (HC) to be combined with innovative targets such as thalamic CL. Meanwhile, collaborators Mayo Clinic have developed the Epilepsy Personal Assistant Device (EPAD), a custom application running on a hand-held device with bi-directional communication with the RC+S. The EPAD will enable cloud-based data storage, seizure diaries, and automatic behavioral tests. Therefore, the goal is to develop and pilot test the feasibility and safety of bilateral thalamic CL stimulation using RC+S to restore conscious arousal in TLE seizures which are not stopped by conventional responsive neurostimulation, offering hope to greatly improve quality of life in these patients. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04897776
Study type Interventional
Source Yale University
Contact
Status Active, not recruiting
Phase N/A
Start date October 31, 2021
Completion date August 31, 2024

See also
  Status Clinical Trial Phase
Completed NCT00001672 - Language Localization Using Repetitive Transcranial Magnetic Stimulation (rTMS) in Patients With Epilepsy N/A
Recruiting NCT05947656 - Evaluation of the NaviFUS System in Drug Resistant Epilepsy N/A
Not yet recruiting NCT06036732 - A New Approach in Intensive Care Unit Consciousness Assessment: FIVE Score
Recruiting NCT04164056 - Hippocampal and Thalamic DBS for Bilateral Temporal Lobe Epilepsy Phase 4
Completed NCT03265925 - Brain Network Activation Analysis in Epilepsy
Enrolling by invitation NCT02151175 - Low-intensity Focused Ultrasound Pulsation (LIFUP) for Treatment of Temporal Lobe Epilepsy N/A
Recruiting NCT03478852 - Investigating Epilepsy: Screening and Evaluation
Recruiting NCT01273129 - Surgery as a Treatment for Medically Intractable Epilepsy
Not yet recruiting NCT06057233 - Innovative MRI to Localize the Epileptic Zone
Withdrawn NCT02913742 - The Utility of NIOM During LITT for Refractory MTLE N/A
Recruiting NCT04649008 - Localizing Epileptic Networks Using MRI and iEEG Early Phase 1
Completed NCT00931619 - GABA/Glutamate Balance in Temporal Lobe Epilepsy With and Without Major Depression
Recruiting NCT04717388 - Pathophysiology, Psycho-emotional and Cognitive Functioning Associated With Tinnitus N/A
Completed NCT00706160 - Language Mapping in Patients With Epilepsy
Recruiting NCT05339438 - Pre-operative Mapping of the Anterior Temporal Lobe Using Functional MRI Innovative Techniques in in Drug-resistant Epileptic Patients N/A
Not yet recruiting NCT04871555 - Structural Cartography of the Insula in Temporal Epilepsy Patients
Completed NCT04169581 - A Deep Learning Framework for Pediatric TLE Detection Using 18F-FDG-PET Imaging
Completed NCT00040326 - Early Surgical Intervention to Treat Epilepsy Phase 3
Not yet recruiting NCT06422923 - Effect of NRTX-1001, a Cellular Therapy Product, for the Treatment of Refractory Bilateral TLE Phase 1
Recruiting NCT03871842 - Effects of tDCS on Depressive Symptoms of Participants With Temporal Lobe Epilepsy N/A