View clinical trials related to Epilepsy Intractable.
Filter by:This study aims to evaluate the efficacy of a ketogenic diet in treating pediatric intractable epilepsy and to explore its relationship with changes in inflammatory markers. The investigators plan to recruit 59 participants with intractable epilepsy, 39 of whom will receive a combination of ketogenic diet and conventional antiepileptic drugs, while 20 will receive only conventional drugs. The study will assess the impact of the ketogenic diet on epilepsy control and inflammatory markers, hoping to discover new treatment strategies.
Patients with cryptogenic focal epilepsy (unknown cause) represent about the 30% of the entire population of epilepsy patients. Among them, about 30% are drug-resistant. The implementation of of high-field magnetic resonance imaging resolution, the new Next Generation Sequencing techniques,and innovative non-invasive neurophysiological methods (Electroencephalogram-Functional magnetic resonance imaging and High Density-Electroencephalogram) could provide a superior identification of the epileptogenic zone and therefore an increased access to epilepsy surgery. Despite this, patients with cryptogenic epilepsy require more frequently invasive methods of presurgical study and they have more unfavorable results than patients with lesions detectable on magnetic resonance imaging. Within this context, the study is aimed at integrating the neurophysiological, radiological, neuropsychological and genetic aspects of patients with focal cryptogenic epilepsy in order to evaluate their surgical eligibility,sparing invasive methods.
Upon successful completion of this study, the investigators expect the study's contribution to be the development of noninvasive imaging biomarkers to predict IEEG functional dynamics and epilepsy surgical outcomes. Findings from the present study may inform current and new therapies to map and alter seizure spread, and pave the way for less invasive, better- targeted, patient-specific interventions with improved surgical outcomes. This research is relevant to public health because over 20 million people worldwide suffer from focal drug-resistant epilepsy and are potential candidates for cure with epilepsy surgical interventions.
The aim of this study is to investigate the effects of cathodal transcranial direct current stimulation in the management of seizures in subjects with focal refractory epilepsy.
People with central lobe epilepsy (CLE), with seizures arising from the primary sensorimotor cortex, typically show a high rate of convulsive seizures that do not respond to anti-epileptic drugs, but have a large impact on quality of life. They often seek surgical relief, but since the area contains the body's indispensable sensorimotor representation, CLE surgery will lead to permanent functional deficits. Cortical stimulation case studies in CLE have shown seizure frequency reduction of more than 90%, but in our experience, stimuli in the central lobe can hardly be applied without interfering with motor function. The investigators propose cortical electrical stimulation therapy of a conceptually novel type. The investigators systematically determine individual stimulation settings, stimulation site and a seizure detection algorithm. In REC2Stim (Rational Extra-eloquent Closed-loop Cortical Stimulation), at the start of a seizure, a train of electric pulses is delivered to a nearby extra-eloquent area connected with the epileptogenic area within the sensorimotor cortex. Success will constitute a therapeutic modality for pharmaco-resistant patients with an epileptic focus in eloquent areas.
The purpose of this study is to obtain preliminary data in advance of a larger clinical trial aimed to test whether a single session of green light exposure can lead to a clinically significant reduction in epileptic spikes in patients with medically-refractory epilepsy. As this is a potentially fragile patient population, the study will test safety and tolerability as well as efficacy.
Neurologic disease with loss of motor function is a major health burden. Brain-computer interfaces (BCI) are systems that use brain signals to power an external device, such as a communication board or a prosthetic device, which may help people with loss of motor function. Electrocorticography (ECoG) has been used to decode hand movements and as a control signal for brain-computer interface (BCI). This study hopes to use a smaller spacing of ECoG to see if a better motor signal can be found and used as a BCI control signal.
The main goal of this study is to evaluate the additional value of EEG-fMRI method in the presurgical evaluation of focal intractable epilepsy. To consider a patient for surgery, the main difficulty is to define accurately the epileptogenic zone. This definition is complex and is often supported by several types of exploration (MRI, FDG PET, neuropsychological testing, video-EEG...). In this study we will evaluate the adding value of the simultaneous recording of EEG and fMRI in the epileptogenic zone definition.