View clinical trials related to Enterocolitis.
Filter by:Necrotizing enterocolitis (NEC) is a gastrointestinal system disease characterized by inflammatory necrosis of the intestine mainly seen in premature infants, and continues to be an important cause of mortality and morbidity in neonatal intensive care units all over the world. Although it is more common in premature infants, it is also seen in term babies when the intestine is ischemic. Although the major problem in premature babies is the immaturity of the intestine, many factors contributing to immaturity play a role in the pathogenesis of NEC.
Assesses the efficacy of melatonin in treatment of feeding intolerance in preterm infants, the time needed to reach full enteral intake, the incidence of necrotizing enterocolitis and measures the level of tumor necrosis factor-alpha as a marker of oxidative stress.
To assess the value of peripheral blood neutrophil to lymphocyte ratio (NLR), serum levels of γ-Glutamyl transferase (GGT), total serum bilirubin and serum calcium (Ca2+) concentrations for early diagnosis and prediction of NEC severity and if found significant, scoring will be done according to their levels in different Bell's stages.
BACKGROUND Treatment of neonatal respiratory distress syndrome with exogenous surfactant and mechanical ventilation made millions of preterm infants survived in neonatal intensive care unit (NICU). Endotracheal intubation surfactant administration is related to invasive intubation and short periods of positive pressure ventilation and implies the risk of lung injury. Continuous positive airway pressure (CPAP) or NIPPV (Non-invasive positive pressure ventilation) with surfactant but without intubation may work synergistically. This randomized trial investigated a minimal invasive surfactant administration (MISA). To test the hypothesis that MISA increases survival without bronchopulmonary dysplasia (BPD) at 36 weeks' gestational age in very low birth weight infants. DESIGN, SETTING, AND PARTICIPANTS The Minimal Invasive Surfactant Administration (MISA) was a multicenter, randomized, clinical, parallel-group study conducted between July 1st, 2017, and November 30, 2018, in 8 level III neonatal intensive care units in Beijing, Tianjin, and Hebei province, China. The final follow-up date was March 30, 2019. Participants enrolled spontaneously breathing preterm infants born between 26.1 and 31.9 weeks' gestational age with signs of respiratory distress syndrome. In an intention-to-treat design, infants were randomly assigned to receive surfactant (Calf pulmonary surfactant, Double-Crane Pharmaceutical Co., China) either via a 5Fr nasogastric tube during CPAP/NIPPV-assisted spontaneous breathing (minimal invasive surfactant administration group, MISA group) or after conventional endotracheal intubation during mechanical ventilation (endotracheal intubation surfactant administration group, EISA group). INTERVENTION MISA via a 5Fr nasogastric tube with an ophthalmic surgery straight forceps.
Background: Intestinal resections are commonly performed in the pediatric population. Perfusion of the bowel is one of the most important factors determining the viability of an intestinal anastomosis. Up to date, no ideal method to assess intestinal perfusion has proven its superiority. Objectives: Primary: The aim of this study is to establish the feasibility and impact of the use of indocyanine green technology on intestinal resection margins during elective and emergency pediatric surgeries. Secondary: The secondary outcomes of interest include collection of adverse events and difficulties encountered with the use of the indocyanine green (ICG) technology. Postoperative surgical complications will also be recorded. Study Design: An open observational clinical study will be performed by using a clinical drug (indocyanine green) and medical device (SPY Fluorescence Imaging) to assess intraoperatively intestinal perfusion in a specific pediatric population.
Necrotizing enterocolitis (NEC) is a devastating disease affecting the intestines of premature infants. It involves intestine swelling, tissue destruction, infection, and even death. Improved outcome is highly dependent on early recognition and treatment, however the signs and symptoms of NEC in early stages are not obvious making it difficult to diagnose. Abdominal x-rays and ultrasound can be non-specific and may not show signs of the disease until late in its course. Infrared imaging is a non-invasive, non-radiation method that can measure the heat given off of the surface of the body and create heat maps. It is being used clinically in other situations but is still under investigation for use in preterm infants with suspected NEC. Computer analysis of the measured heat maps can be used to detect changes in the intestine such as the swelling or tissue destruction involved in NEC. Our group has previously performed a pilot study that showed that infrared imaging on babies in the NICU can be used to create heat maps that are different between normal babies and those with NEC when analyzed using specialized computer programs. In this study the investigators will improve the imaging process by using special vision sensors to automate the imaging process and make it easier for bedside staff to use this technology. Special programs will be developed to automatically select areas of interest over which temperature maps will be analyzed. The investigators will use this new imaging technique to study a population of newborns diagnosed with definitive NEC and a healthy population of newborns without NEC, and compare the heat maps obtained from each group. From the analysis of the images obtained from these two populations, the investigators will determine the suitability and necessary fine-tuning of this new imaging technique with the hopes that this technology can someday aid in the early diagnosis of NEC.
The aim was to assess the ability of bovine colostrum concentrate to reduce the incidence of late-onset sepsis episodes and necrotizing enterocolitis in artificially fed preterm neonates and its effect on T regulatory cells. And to evaluate the effect of bovine colostrum concentrate on feeding tolerance, growth, hospital stay and mortality in preterm neonates.
This study evaluates the effect of repeated low-dose erythropoietin (EPO) treatment on necrotizing enterocolitis (NEC) in very preterm infants. Half of participants will receive EPO, while the other half will receive a placebo.
Necrotizing enterocolitis (NEC) affects up to 10% of very preterm infants. NEC mortality is high (30-50 %) and has remained unchanged over the last decades. New treatments are urgently needed. NEC pathogenesis is multifactorial, but bowel ischemia plays an essential role in NEC development. Remote ischemic conditioning (RIC) consists in inducing brief periods of non-lethal ischemia in a limb distant to an organ suffering from ischemia. RIC has been used in adults, children and term neonates with a variety of diagnosis. However, no study has been done including preterm infants with NEC.
Very preterm infants (<32 weeks gestation) show the immaturity of organs and have high nutrient requirements for growth and development. In the first weeks, they have difficulties tolerating enteral nutrition (EN) and are often given supplemental parenteral nutrition (PN). A fast transition to full EN is important to improve gut maturation and reduce the high risk of late-onset sepsis (LOS), related to their immature immunity in gut and blood. Conversely, too fast increase of EN predisposes to feeding intolerance and necrotizing enterocolitis (NEC). Further, human milk feeding is not sufficient to support nutrient requirements for growth of very preterm infants. Thus, it remains a difficult task to optimize EN transition, achieve adequate nutrient intake and growth, and minimize NEC and LOS in the postnatal period of very preterm infants. Mother´s own milk (MM) is considered the best source of EN for very preterm infants and pasteurized human donor milk (DM) is the second choice if MM is absent or not sufficient. The recommended protein intake is 4-4.5 g/kg/d for very low birth infants when the target is a postnatal growth similar to intrauterine growth rates. This amount of protein cannot be met by feeding only MM or DM. Thus, it is common practice to enrich human milk with human milk fortifiers (HMFs, based on ingredients used in infant formulas) to increase growth, bone mineralization and neurodevelopment, starting from 7-14 d after birth and 80-160 ml/kg feeding volume per day. Bovine colostrum (BC) is the first milk from cows after parturition and is rich in protein (80-150 g/L) and bioactive components. These components may improve gut maturation, NEC protection, and nutrient assimilation, even across species. Studies in preterm pigs show that feeding BC alone, or DM fortified with BC, improves growth, gut maturation, and NEC resistance during the first 1-2 weeks, relative to DM, or DM fortified with conventional HMFs. On this background, the investigators hypothesize that BC, used as a fortifier for MM or DM, can reduce feeding intolerance than conventional fortifiers.