View clinical trials related to Enterocolitis.
Filter by:Hypothesis to be Tested: Since the first description of intravenous alimentation over half a century ago, parenteral nutrition (PN) has become a common nutritional intervention for conditions characterized by inability to tolerate enteral feeds such as Short Bowel Syndrome, Chronic Intestinal Pseudoobstruction, Microvillus Inclusion Disease, Crohn's disease, multi-organ failure and prematurity. Parenteral Nutrition-Associated Liver Disease (PNALD) encompasses a spectrum of disease including cholestasis, hepatitis, steatosis and gallbladder sludge/stones which may progress to liver cirrhosis and even failure. There is a direct correlation between duration of parenteral nutrition and development of cholestasis in infants. There is evidence in animals and humans that cycling of parental nutrition, defined as infusing nutrients over a time period shorter than 24 hours, reduces cholestasis. There is also data that premature infants with gestational age (GA) < 32 weeks and birth weight <1500g, as well as infants with congenital anomalies of the gastrointestinal tract, are among those at highest risk of developing Parenteral Nutrition-Associated Cholestasis (PNAC). We therefore hypothesize that infants with gestational age (GA) <32 weeks and birth weight (BW) between <1500g, or with congenital anomaly of the gastrointestinal tract regardless of GA or BW, receiving PN over a period of 20 hours will have a decrease severity of PNAC, demonstrated by a lower peak direct bilirubin, compared to a similar control population receiving standard 24 hour infusion.
This study will compare the effectiveness of two surgical procedures -laparotomy versus drainage - commonly used to treat necrotizing enterocolitis (NEC) or isolated intestinal perforations (IP) in extremely low birth weight infants (≤1,000 g). Infants diagnosed with NEC or IP requiring surgical intervention, will be recruited. Subjects will be randomized to receive either a laparotomy or peritoneal drainage. Primary outcome is impairment-free survival at 18-22 months corrected age.
Bacterial infections are a major cause of death in newborn infants. And are linked to complications including: sepsis (an over exaggerated immune response to infection) and necrotising enterocolitis (a potentially fatal inflammatory bowel disease). Detecting infections at an early stage is difficult in newborns as the signs and symptoms can be non-specific, the most commonly used lab test is to culture a sample of blood, urine or spinal fluid to try and grow and identify any bacteria that is present; however these tests take 24-48 hours to give results, and this means that neonates who present with signs of infection are prescribed broad spectrum antibiotics whilst results are obtained. The lack of a test that can detect infection at an early stage and give rapid results is one of the major problems in the diagnosis and management of infection in newborns. This study will investigate neutrophils, which are white blood cells that are important in fighting infection. When neutrophils detect and infection they become activated, and produce a protein called CD64 (a cell marker) on their surface, and it is this protein that we want to measure. Neutrophils produce the CD64 protein within 1 hour of first detecting an infection, so we could hopefully detect and treat infections much quicker. The hypothesis this study will test are: 1. Does neutrophil membrane CD64 measurement provide a highly sensitive and specific marker of infection in neonates AND: 2. Does neutrophil membrane CD64 measurement provide a highly sensitive and specific marker of NEC in neonates
The purpose of the trial is to demonstrate the effect of B. lactis in reducing the incidence of Necrotizing Enterocolitis (NEC) compared to placebo in preterm infants.
The purpose of this study was to see if a brief delay in cord clamping for 30 to 45 seconds would result in higher hematocrit levels, fewer transfusions, healthier lungs, and better motor function at 40 wks and 7 months of age.
We hypothesize that supplementing maternal diet with probiotics will decrease the incidence of feeding intolerance, necrotizing enterocolitis and sepsis in preterm infants fed breastmilk.
This proposal will test the hypothesis that synthesis and catabolism of epidermal growth factor (EGF), the genotype of the EGF gene, and the microbiome interact to influence EGF expression in infants at risk for necrotizing enterocolitis (NEC).
The purpose of this study is to better understand S-nitrosohemeglobin (SNO-Hb) in transfused blood of extremely preterm infants. The long term goal of the project is to identify variation in the SNO-Hb between packed red blood cell units, and between and among individual preterm infants pre and post-transfusion. Duke investigators are developing methods to replenish SNO-Hb, which, if successful, would improve RBC deformation in addition to providing a vasodilatory stimulation to hypoxic tissue, and lead to a randomized clinical trial testing treated vs. untreated RBC transfusions in extremely premature infants. AIM 1. Measure the Total Hemoglobin (Hb)-bound nitric oxide (NO), Hb [Fe] NO, SNO-Hb (a calculated value = (total Hb-NO - Hb [Fe] NO) in blood to be transfused in extremely preterm babies, and in samples pre and post- transfusion from the babies. Hypothesis 1: Measures of NO and SNO-Hb will be low in blood used for transfusion in preterm infants and will be decreased in the post-transfusion samples from the infants compared with the pre-transfusion samples. AIM 2. Collect clinical data about study participants, including oxygen saturation and measures of perfusion pre and post-transfusion. Hypothesis 2: Measures of perfusion will be reduced by 20% post-transfusion in extremely preterm infants.
This is a prospective in vitro cell biology study of polymorphonuclear leukocyte (PMN) protein synthesis in response to PAF. PMNs from cord blood of premature human infants at risk for NEC (birth weight between 501 - 1500 grams) and PMNs from cord blood of healthy term infants will be isolated and stimulated with PAF, a biologically active phospholipid implicated in the pathogenesis of NEC. NEC, a disease of prematurity with an incidence of 10.1% of infants born weighing between 501 - 1500 grams, is associated with significant morbidity and mortality. We will compare the protein synthesis of inflammatory modulators, including Interleukin 6 Receptor alpha (IL-6R alpha) and Retinoic Acid Receptor alpha (RAR alpha) proteins to protein synthesis responses already observed in PMNs isolated from healthy adults. Furthermore, we will characterize the expression and activity of the mammalian target of rapamycin (mTOR) translational protein synthesis control pathway in PMNs isolated from preterm and term infants and compare those results with previous observations in PMNs isolated from adults. This pathway is known to regulate IL-6R alpha and RAR alpha protein expression in PMNs isolated from adults. We will also follow those premature infants at risk for NEC clinically to determine which infants develop NEC and what risk factors may be associated with NEC in this population.
The purpose of the study is to determine whether vitamin A can improve survival and facilitate recovery from sepsis and necrotizing enterocolitis in hospitalized neonates.