Clinical Trials Logo

Encephalitis clinical trials

View clinical trials related to Encephalitis.

Filter by:

NCT ID: NCT01991067 Completed - Clinical trials for Tick Borne Encephalitis

Humoral and Cellular Immunity for TBE Vaccination in Allogeneic HSCT Recipients

Start date: July 2014
Phase: Phase 2
Study type: Interventional

Patients undergoing allogeneic blood and marrow transplantation (HSCT) experience a prolonged period of dysfunctional immunity. Systematic reimmunization is necessary at appropriate time intervals following transplantation to re-establish immunity. Vaccination practices after HSCT remain varied and data sparse. Tick-borne encephalitis (TBE) is one of the most severe infections of the central nervous system caused by a tick-borne flavivirus. There is no specific treatment, and prevention with the vaccine is the only intervention available. To assess the efficacy of TBE vaccination in adult allogeneic HSCT recipients compared to an age-matched and sex-matched control group of healthy volunteers without previous TBE vaccination, a prospective open-label phase II pilot study on humoral and cellular immune responses after use of TBE vaccine (FSME Immun) will be performed. As primary end point the outcome of the neutralization test (NT) against TBE will be assessed in a total of 26 HSCT patients one year after HSCT and in 26 healthy volunteers, namely four weeks after the second vaccination. Therefore, the number of subjects with NT titres against TBE virus >10, assumed to be the threshold for antibody-mediated protection will be evaluated. As secondary endpoints, antibody concentrations of TBE enzyme-linked immunosorbent assay before and four weeks after the second and third vaccination and antibody concentrations of NT against TBE four weeks after primary immunization. To evaluate cellular immune responses, lymphocyte proliferations assays and cytokine detection assays will be performed. In a subgroup analysis, these secondary endpoints will be compared between healthy volunteers, HSCT patients without immunosuppressive treatment and HSCT patients receiving immunosuppressive agents. Additionally, immune reconstitution by analysis of peripheral blood lymphocyte subsets and serum immunoglobulin levels will be evaluated prior to vaccination, after twelve weeks and prior to the third vaccination in HSCT patients only.

NCT ID: NCT01984983 Completed - Clinical trials for Venezuelan Equine Encephalitis Virus Infection

Study of a DNA-based Venezuelan Equine Encephalitis Virus DNA Vaccine Administered by Electroporation in Healthy Volunteers

Start date: December 2013
Phase: Phase 1
Study type: Interventional

The Phase I study will assess the basic safety, tolerability, and immunogenicity of a DNA-based Venezuelan equine encephalitis virus (VEEV)vaccine candidate delivered by electroporation . The study will enroll 40 healthy adult volunteers ages 18-49 and will comprise evaluation of intradermal or intramuscular administration by electroporation. Administration of the vaccine candidate will be at two DNA dose levels (0.5 mg/ml and 2.0 mg/ml) for each route of administration. Electroporation will be administered using the TriGrid Delivery System devices for intramuscular and intradermal delivery. An additional group of subjects will serve as a placebo control, receiving injections of saline with electroporation. The overall goal of this study will be to determine if further human clinical studies of the vaccine candidate are warranted and, if so, to aid in the selection of dose and route of administration for future studies.

NCT ID: NCT01943305 Completed - Yellow Fever Clinical Trials

The Role of Pre-existing Cross-reactive Antibodies in Determining the Efficacy of Vaccination in Humans

Start date: October 2013
Phase: Phase 2
Study type: Interventional

Epidemic viral diseases have become more prevalent in recent years. Among the various strategies to prevent such epidemics, vaccination is the most cost-effective. However, populations that are immunized are typically already exposed to multiple previous vaccinations or natural infections. Studies from this and other laboratories have revealed that pre-existing dengue antibodies can either inhibit or enhance subsequent dengue infection depending on the pre-existing antibody levels. While cross-reactive antibody is potentially pathogenic in dengue, how it impacts immune response to vaccination is unclear. Indeed, aggregated at the site of vaccination and the respective draining lymph nodes are antigen-presenting and immune regulatory cells that express Fc receptors and play pivotal roles in determining the magnitude and polarity of the immune response. Vaccine uptake by these antigen-presenting cells may thus be either inhibited or enhanced when vaccines are opsonized with cross-reactive antibodies. In view of the limited knowledge on how cross-reactive antibodies affect vaccination outcome, investigators propose here a study that exploits the known cross reactivity between Japanese encephalitis (JE) virus antibody and yellow fever (YF) vaccine. Investigators hypothesize that cross-reactive antibodies impacts antibody response to YF at the point vaccination in a concentration-dependent manner by altering both vaccine uptake and the innate immune response by antigen presenting cells. Investigators will structure an open label clinical trial on sequential vaccination with JE and YF vaccines, with different time intervals between vaccinations. This would test immune response to YF vaccination in subjects with different titer of cross-reactive JE vaccine-derived antibodies.

NCT ID: NCT01900444 Completed - Clinical trials for Japanese Encephalitis

Study of a Booster Dose of IMOJEV® One Year After Primary Immunization in Healthy Children in South Korea

Start date: July 11, 2013
Phase: Phase 3
Study type: Interventional

The aim of this study was to document the immunogenicity and safety of a booster dose of IMOJEV administered at least 12 months after the primary dose. Primary objective: - To describe the immune response to Japanese Encephalitis (JE) before and 28 days after a booster dose of IMOJEV administered at least 12 months after primary vaccination with IMOJEV. Exploratory objectives: - To describe the safety profile of a booster dose of IMOJEV® .

NCT ID: NCT01865578 Completed - Clinical trials for Anti-NMDA Receptor Encephalitis

Transcranial Direct Current Stimulation on Cortical Plasticity in Patients With Anti-NMDA Receptor Encephalitis

Start date: April 2012
Phase: N/A
Study type: Interventional

Patients suffering from anti-NMDA receptor encephalitis show impaired NMDA-receptor dependent neuronal transmission. Furthermore, they often have cognitive deficits of different magnitude. Impaired neuronal signaling of NMDA-receptors very likely result in decreased cortical synaptic plasticity. Thus, this represents one major reason of cognitive deficits. Synaptic plasticity can be assessed in humans via the non-invasive technique of transcranial magnetic stimulation (TMS). The current study aims to investigate whether learning ability and also cortical plasticity can be changed by applying sessions of transcranial direct current stimulation (tDCS). Therefore, we are recruiting 10 to 15 patients suffering from anti-NMDA receptor encephalitis as well as healthy controls in order to compare tDCS effects. Learning ability is assessed by motor sequence tasks, whereas cortical plasticity is measured via TMS. tDCS is a novel non-invasive technique allowing induction of changes in cerebral excitability level and also cortical plasticity. Previous studies showed positive outcome of anodal stimulation on learning tasks. Especially motor learning seems to be an important target for tDCS treatment since it showed best results for both post-stroke patients and healthy subjects. Multiple sessions of tDCS are inducing long-term effects and improved learning function, which were present three months after stimulation. In this study we hope to reveals new insights into the pathomechanisms of impaired cognitive and learning abilities in patients having anti-NMDA receptor encephalitis. Moreover, we evaluate whether tDCS is an effective treatment for patients with cognitive and learning deficits.

NCT ID: NCT01856205 Completed - Clinical trials for Japanese Encephalitis

Safety and Efficacy Study of Intravenous Immunoglobulin to Treat Japanese Encephalitis

Start date: May 2009
Phase: Phase 2
Study type: Interventional

Japanese encephalitis is caused by a viral infection of the brain transmitted by the bite of an infected mosquito. Patients with Japanese encephalitis can rapidly develop worsening conscious level and seizures. Around a third will die from the infection and half of survivors have serious long-term neurological disability. The majority of those affected are children. There are many causes of viral encephalitis, however Japanese encephalitis virus is the most common cause worldwide with over 60,000 cases annually. It occurs over much of Asia and the geographical range is expanding. There is no specific treatment for Japanese encephalitis virus, although several have been trialed. In this study we examined the effect of a new treatment, called intravenous immunoglobulin, on children with Japanese encephalitis in Nepal. Prior studies have suggested intravenous immunoglobulin may neutralize Japanese encephalitis virus and suppress damaging inflammation in the brain. It has previously been used in individual cases but never examined in a randomized trial. There was recently a trial of IVIG in West Nile encephalitis in the United States, in which Professor Solomon was on the Scientific Advisory Committee. In this study we will look if intravenous immunoglobulin is safe in this context, and that this treatment may alter the way the immune system manages the infection. Therefore, in this pilot study we will test the hypothesis that IVIG can be safely given to children with suspected JE, with no increased risk of serious adverse events compared with placebo. The aim of this proposal is to conduct a pilot safety and tolerability randomized placebo controlled trial of intravenous immunoglobulin (IVIG) in patients with Japanese encephalitis, to explore the relationship between JEV viral load, pro-inflammatory markers called cytokines and blood brain barrier markers, and the effect of IVIG on these relationships.

NCT ID: NCT01851356 Completed - Major Depression Clinical Trials

Brain Inflammation in Major Depressive Disorder Background

Start date: May 8, 2013
Phase:
Study type: Observational

Background: - Studies have shown that inflammation plays an important role in depression. Brain inflammation may contribute to depression, and may make it more difficult to treat some kinds of depression with current therapies. Researchers want to use magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning to study inflammation in the brain. To do so, they will use a contrast agent, which is a chemical that can show inflammation during an imaging study. Objectives: - To see if people with major depressive disorder have increased inflammation in the brain. Eligibility: - Individuals at least 18 years of age who have major depressive disorder. Design: - Participants will be screened with a physical exam and medical history. They will provide blood samples before the scanning sessions. - Participants will have a PET scan after the screening visit. They will have a dose of the contrast agent before the study. This scan will look for possible brain inflammation. - Participants will also have an MRI scan. This scan will take pictures of the brain for comparison studies. - Treatment will not be provided as part of this study.

NCT ID: NCT01815073 Completed - Clinical trials for Japanese Encephalitis

Immunogenicity and Safety of Live Attenuated Varicella Vaccine Combined With Live Attenuated JE Vaccine

Start date: March 2013
Phase: Phase 4
Study type: Interventional

The purpose of this study is to observe the occurrence of adverse events and seroconversion rate, geometric mean titres (GMTs) of live attenuated varicella vaccine,live attenuated JE vaccine and live attenuated varicella vaccine combined with live attenuated JE vaccine, respectively.

NCT ID: NCT01710189 Completed - Clinical trials for Tick-Borne Encephalitis

Cervicovaginal Immune Responses to 3 Deltoid or Thigh Intramuscular (IM) TicoVac

CRC306
Start date: October 2012
Phase: Phase 4
Study type: Interventional

Many viral infections of global importance, including HIV, are transmitted across the mucosal surface of the genital tract. As immunity against these infections is likely to be primarily mediated by antibodies in mucosal secretions, developing techniques to increase the levels and persistence of antiviral antibody on mucosal surfaces may enhance the protection against a number of important infections. Preclinical studies have anatomically targeted vaccine antigens to sites where genital tract immunity is induced. This response is likely due to the ability of regional lymph Preclinical studies have anatomically targeted vaccine antigens to sites where genital tract immunity is induced. This response is likely due to the ability of regional lymph nodes to "pattern" the cell surface markers of responding vaccine specific lymphocytes with homing markers. In contrast, injecting a distant muscle (such as in the arm) which shares no anatomical relationship with the vagina, may not pattern cells with homing markers for the genital tract. Direct injection of inguinal lymph nodes is impractical in humans but intramuscular injection into the thigh will target antigens to the deep inguinal lymph nodes shared in common with the cervix/vagina. This study will be a Phase IV randomised, single centre, open label, laboratory assessment blinded exploratory trial to assess mucosal immunogenicity following three targeted intramuscular immunisations with TicoVac vaccine. 20 subjects will be randomised to each of2 groups immunised in right deltoid or right anterolateral thigh. Following an initial screening visit subjects will be immunised at 0, 1 and 6 months. There will be follow up visits 5 days after each immunisation and a final visit at 7 months. Blood samples and cervicovaginal secretions will be taken prior to each immunisation for immunological measures. In addition, blood samples will be taken at each immunisation and follow up visit for measurement of peripheral blood mononuclear cells. The study is funded by ADITEC, which is a collaborative research programme that aims to accelerate the development of novel and powerful immunisation technologies for the next generation of human vaccines.

NCT ID: NCT01694524 Completed - Meningitis Clinical Trials

Nervous System Infections Among Patients With Febrile Seizure

Start date: June 2013
Phase: N/A
Study type: Observational

Few studies dealing with the risk of infectious of nervous system and the utility of lumbar puncture and of emergent neuroimaging among patients with simple febrile seizure between 3 and 11 months age and with complex seizure has been reported. None of these studies was multicentric. Recommendations about management of these children are heterogeneous. The investigators aim to study by an observational retrospective multicentric study the rate of infectious of central nervous system among patients with a complex febrile seizure and among patients between 3 and 11 months age with simple febrile seizure.