Clinical Trials Logo

Clinical Trial Summary

BACKGROUND: At Emergency Medical Dispatch (EMD) centers, Resource Constrained Situations (RCS) where there are more callers requiring an ambulance than there are available ambulances are common. At the EMD centers in Uppsala and Västmanland, patients experiencing these situations are typically assigned a low-priority response, are often elderly, and have non-specific symptoms. Machine learning techniques offer a promising but largely untested approach to assessing risks among these patients. OBJECTIVES: To establish whether the provision of machine learning-based risk scores improves the ability of dispatchers to identify patients at high risk for deterioration in RCS. DESIGN: Multi-centre, parallel-grouped, randomized, analyst-blinded trial. POPULATION: Adult patients contacting the national emergency line (112), assessed by a dispatch nurse in Uppsala or Västmanland as requiring a low-priority ambulance response, and experiencing an RCS. OUTCOMES: Primary: 1. Proportion of RCS where the first available ambulance was dispatched to the patient with the highest National Early Warning Score (NEWS) score Secondary: - Difference in composite risk score consisting of ambulance interventions, emergent transport, hospital admission, intensive care, and mortality between patients receiving immediate vs. delayed ambulance response during RCS. - Difference in NEWS between patients receiving immediate vs. delayed ambulance response during RCS. INTERVENTION: A machine learning model will estimate the risk associated with each patient involved in the RCS, and propose a patient to receive the available ambulance. In the intervention arm only, the assessment will be displayed in a user interface integrated into the dispatching system. TRIAL SIZE: 1500 RCS each consisting of multiple patients randomized 1:1 to control and intervention arms


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT04757194
Study type Interventional
Source Uppsala University Hospital
Contact Hans Blomberg, MD, PhD
Email hans.blomberg@akademiska.se
Status Recruiting
Phase N/A
Start date February 1, 2021
Completion date March 1, 2025

See also
  Status Clinical Trial Phase
Completed NCT05552989 - Towards Better Preparedness for Future Catastrophes - Local Lessons-learned From COVID-19
Not yet recruiting NCT04915690 - Investigation on the Practice Status of Emergency Stuff
Not yet recruiting NCT03424096 - Primary Palliative Care Education, Training, and Technical Support for Emergency Medicine N/A
Completed NCT02534324 - The Effect of Pre-discharge Blood Pressure of Patients With Asymptomatic Severe Hypertension in Emergency Department N/A
Completed NCT00991471 - The Effect of an Physician-Nurse Supplementary Triage Assistance Team on Emergency Department Patient Wait Times N/A
Recruiting NCT03257319 - Inhaled vs IV Opioid Dosing for the Initial Treatment of Severe Acute Pain in the Emergency Department Phase 3
Recruiting NCT05005117 - Laparoscopic Approach for Emergency Colon Resection N/A
Recruiting NCT03917368 - Ultrasound Evaluation of the Jugular Venous Pulse (US-JVP) N/A
Completed NCT04601922 - Qualitative Study of Long Term Cardiovascular Risk Prediction in the Emergency Department
Recruiting NCT05497830 - Machine Learning for Risk Stratification in the Emergency Department (MARS-ED) N/A
Active, not recruiting NCT06220916 - The Greek Acute Dance Injuries Registry
Recruiting NCT05496114 - Medical Checklists in the Emergency Department N/A
Recruiting NCT05543772 - Evaluation of Blood Sampling From a Pre-existed Peripheral Intravenous Catheter Line Phase 4
Recruiting NCT06072534 - Evaluation of Effectiveness of Two Different Doses of Mivacurium in Rapid Sequence Intubation N/A
Not yet recruiting NCT05528211 - Safety and Efficacy of Emergent TAVI in Patients With Severe AS
Completed NCT05818215 - Impact of the Qatar 2022 FIFA World Cup on PED Use and Misuse Patterns
Recruiting NCT04615065 - Acutelines: a Large Data-/Biobank of Acute and Emergency Medicine
Active, not recruiting NCT05221697 - Effect of an ML Electronic Alert Management System to Reduce the Use of ED Visits and Hospitalizations N/A
Active, not recruiting NCT04648449 - Artificial Intelligence (AI) Support in Medical Emergency Calls
Not yet recruiting NCT04431986 - ER2 Frailty Levels and Incident Adverse Health Events in Older Community Dwellers